Stable chimeras of non-locally coupled Kuramoto–Sakaguchi oscillators in a finite array

被引:0
|
作者
Seungjae Lee
Young Sul Cho
机构
[1] Jeonbuk National University,Department of Physics
来源
关键词
Chimera state; Cluster synchronization; Non-locally coupled Kuramoto–Sakaguchi oscillators;
D O I
暂无
中图分类号
学科分类号
摘要
We consider chimera states of coupled identical phase oscillators where some oscillators are phase synchronized (have the same phase) while others are desynchronized. Chimera states of non-locally coupled Kuramoto–Sakaguchi oscillators in arrays of finite size are known to be chaotic transients; after a transient time, all the oscillators are phase synchronized, with the transient time increasing exponentially with the number of oscillators. In this work, we consider a small array of six non-locally coupled Kuramoto–Sakaguchi oscillators and modify the range of the phase lag parameter to destabilize their complete phase synchronization. Under these circumstances, we observe a chimera state spontaneously formed by the partition of oscillators into two independently synchronizable clusters of both stable and unstable synchronous states. In the chimera state, the trajectory of the phase differences of the desynchronized oscillators relative to the synchronous cluster is a stable periodic orbit, and as a result, the chimera state is a stable but not long-lived transient. We observe the chimera state with random initial conditions in a restricted range of the phase lag parameter and clarify why the state is observable in the restricted range using Floquet theory for periodic orbit stability.
引用
收藏
页码:476 / 481
页数:5
相关论文
共 47 条
  • [21] Synchronization and suppression of chaos in non-locally coupled map lattices
    Szmoski, R. M.
    Pinto, S. E. De S.
    Van Kan, M. T.
    Batista, A. M.
    Viana, R. L.
    Lopes, S. R.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 999 - 1009
  • [22] Synchronization and suppression of chaos in non-locally coupled map lattices
    R. M. Szmoski
    S. E. De S. Pinto
    M. T. Van Kan
    A. M. Batista
    R. L. Viana
    S. R. Lopes
    Pramana, 2009, 73 : 999 - 1009
  • [23] Intermittent Finite-Time Control for Consensus of Coupled Kuramoto Oscillators
    Jia, Qiang
    Mwanandiye, Eric S.
    2018 IEEE SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA 2018 (IEEE ISPCE-CN 2018), 2018, : 72 - 75
  • [24] Microscopic correlations in the finite-size Kuramoto model of coupled oscillators
    Peter, Franziska
    Gong, Chen Chris
    Pikovsky, Arkady
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [25] Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators
    English, L. Q.
    Mertens, David
    Abdoulkary, Saidou
    Fritz, C. B.
    Skowronski, K.
    Kevrekidis, P. G.
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [26] Selection of spatial modes in an ensemble of non-locally coupled chaotic maps
    Shabunin, A., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (01): : 109 - 124
  • [27] ON THE UNIQUENESS OF NON-LOCALLY FINITE INVARIANT-MEASURES ON A TOPOLOGICAL GROUP
    RODRIGUEZSALINAS, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (02) : 387 - 397
  • [28] Universality in periodicity manifestations in turbulent non-locally coupled map lattices
    Shimada, T
    Tsukada, S
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (01): : 25 - 40
  • [29] Various amplitude chimeras in locally coupled limit-cycle oscillators: impact of coupled system size
    Alexander, Prasina
    Ndoukouo, A. N.
    Mbouna, S. G. Ngueuteu
    Rajagopal, Karthikeyan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [30] Various amplitude chimeras in locally coupled limit-cycle oscillators: impact of coupled system size
    Prasina Alexander
    A. N. Ndoukouo
    S. G. Ngueuteu Mbouna
    Karthikeyan Rajagopal
    The European Physical Journal Plus, 139