Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni

被引:0
|
作者
Junghwa Lee
Nicolas Dupre
Maxim Avdeev
Byoungwoo Kang
机构
[1] Pohang University of Science and Technology (POSTECH),Department of Materials Science and Engineering
[2] Universite de Nantes,Institut des Materiaux Jean Rouxel (IMN)
[3] CNRS,School of Chemistry
[4] 2 rue de la Houssiniere,undefined
[5] Australian Nuclear Science and Technology Organisation,undefined
[6] The University of Sydney,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We determined how Li doping affects the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4(LNMO) by using neutron diffraction, TEM image, electrochemical measurements, and NMR data. The doped Li occupies empty octahedral interstitials (16c site) before the ordering transition, and can move to normal octahedral sites (16d (4b) site) after the transition. This movement strongly affects the Ni/Mn ordering transition because Li at 16c sites blocks the ordering transition pathway and Li at 16d (4b) sites affects electrostatic interactions with transition metals. As a result, Li doping increases in the Ni/Mn disordering without the effect of Mn3+ ions even though the Li-doped LNMO undergoes order-disorder transition at 700 °C. Li doping can control the amount of Ni/Mn disordering in the spinel without the negative effect of Mn3+ ions on the electrochemical property.
引用
收藏
相关论文
共 50 条
  • [21] Effect of Added LiBOB on High Voltage (LiNi0.5Mn1.5O4) Spinel Cathodes
    Dalavi, Swapnil
    Xu, Mengqing
    Knight, Brandon
    Lucht, Brett L.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (02) : A28 - A31
  • [22] Investigation of Electrolytes Utilized for High-voltage LiNi0.5Mn1.5O4 Batteries
    Qin, Yinping
    Lin, Huan
    Liu, Yang
    Wang, Deyu
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017), 2017, 1890
  • [23] Effect of Ni/Mn Ordering on Elementary Polarizations of LiNi0.5Mn1.5O4 Spinel and Its Nanostructured Electrode
    Cho, Hyung-Man
    Meng, Ying Shirley
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1482 - A1488
  • [24] Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes
    Song, Young-Min
    Kim, Choon-Ki
    Kim, Ko-Eun
    Hong, Sung You
    Choi, Nam-Soon
    JOURNAL OF POWER SOURCES, 2016, 302 : 22 - 30
  • [25] Zr-Doped High-Voltage Spinel LiNi0.5Mn1.5O4 Manufactured via the Coprecipitation Method
    Song, Young-Woong
    Lee, Junghwan
    Jung, Younghoon
    Kim, Min-Young
    Lim, Jinsub
    LANGMUIR, 2024, 40 (43) : 22803 - 22811
  • [26] Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process
    Oh, Si Hyoung
    Jeon, Sang Hoon
    Cho, Won Il
    Kim, Chang Sam
    Cho, Byung Won
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 452 (02) : 389 - 396
  • [27] Improving Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode by Cobalt Surface Modification
    Xue, Yuan
    Zheng, Li-Li
    Wang, Jian
    Zhou, Ji-Gang
    Yu, Fu-Da
    Zhou, Guo-Jiang
    Wang, Zhen-Bo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2982 - 2989
  • [28] Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process
    Oh, Si Hyoung
    Jeon, Sang Hoon
    Cho, Won Il
    Kim, Chang Sam
    Cho, Byung Won
    Journal of Alloys and Compounds, 2008, 452 (02): : 389 - 396
  • [29] Enhancing Orbital Interaction in Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage and High-Rate Li-Ion Batteries
    Fu, Tianji
    Li, Yujie
    Yao, Ziqing
    Guo, Tongsen
    Liu, Shuangke
    Chen, Zhongxue
    Zheng, Chunman
    Sun, Weiwei
    SMALL, 2024, 20 (40)
  • [30] Enhancing Orbital Interaction in Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage and High-Rate Li-Ion Batteries
    Fu, Tianji
    Li, Yujie
    Yao, Ziqing
    Guo, Tongsen
    Liu, Shuangke
    Chen, Zhongxue
    Zheng, Chunman
    Sun, Weiwei
    SMALL, 2024,