Lieb-Thirring inequality for Lp norms

被引:0
|
作者
S. V. Astashkin
机构
[1] Samara State University,
来源
Mathematical Notes | 2008年 / 83卷
关键词
Lieb-Thirring inequality; L; -norm; orthonormal system; orthogonal series; Marcinkiewicz theorem; Fourier multiplier; Rademacher function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain the Lieb-Thirring inequality for Lp-norms. The proof uses only the standard apparatus of the theory of orthogonal series.
引用
下载
收藏
页码:145 / 151
页数:6
相关论文
共 50 条
  • [31] Lieb-Thirring Estimates for Singular Measures
    Rozenblum, Grigori
    ANNALES HENRI POINCARE, 2022, 23 (11): : 4115 - 4130
  • [32] Hardy and Lieb-Thirring Inequalities for Anyons
    Douglas Lundholm
    Jan Philip Solovej
    Communications in Mathematical Physics, 2013, 322 : 883 - 908
  • [33] Magnetic Lieb-Thirring inequalities on the torus
    Ilyin, Alexei
    Laptev, Ari
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (03) : 1111 - 1127
  • [34] Hardy and Lieb-Thirring Inequalities for Anyons
    Lundholm, Douglas
    Solovej, Jan Philip
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 883 - 908
  • [35] ON AN INEQUALITY OF LIEB AND THIRRING
    ARAKI, H
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) : 167 - 170
  • [36] Sharp Lieb-Thirring inequalities in high dimensions
    Laptev, A
    Weidl, T
    ACTA MATHEMATICA, 2000, 184 (01) : 87 - 111
  • [37] A Lieb-Thirring bound for a magnetic Pauli Hamiltonian
    Bugliaro, L
    Fefferman, C
    Frohlich, J
    Graf, GM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (03) : 567 - 582
  • [38] Lieb-Thirring inequalities for generalized magnetic fields
    Mickelin, Oscar
    BULLETIN OF MATHEMATICAL SCIENCES, 2016, 6 (01) : 1 - 14
  • [39] A Lieb-Thirring Bound for a Magnetic Pauli Hamiltonian
    L. Bugliaro
    J. Fröhlich
    G.M. Graf
    J. Stubbe
    C. Fefferman
    Communications in Mathematical Physics, 1997, 187 : 567 - 582
  • [40] Lieb-Thirring Bounds for Interacting Bose Gases
    D. Lundholm
    F. Portmann
    J. P. Solovej
    Communications in Mathematical Physics, 2015, 335 : 1019 - 1056