The tight groupoid of an inverse semigroup

被引:0
|
作者
Ruy Exel
Enrique Pardo
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
[2] Universidad de Cádiz,Departamento de Matemáticas, Facultad de Ciencias
[3] Campus de Puerto Real,undefined
来源
Semigroup Forum | 2016年 / 92卷
关键词
Inverse semigroup; Semi-lattice; Tight character; Tight filter; Ultra-filter; Groupoid; Groupoid C*-algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present algebraic conditions on an inverse semigroup S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} (with zero) which imply that its associated tight groupoid Gtight(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_\mathrm{tight}(\mathcal {S})$$\end{document} is: Hausdorff, essentially principal, minimal and contracting, respectively. In some cases these conditions are in fact necessary and sufficient.
引用
收藏
页码:274 / 303
页数:29
相关论文
共 50 条
  • [31] The Booleanization of an inverse semigroup
    Lawson, Mark, V
    SEMIGROUP FORUM, 2020, 100 (01) : 283 - 314
  • [32] Soft Inverse Semigroup
    Lan, Bingshen
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 23 - 26
  • [33] The Booleanization of an inverse semigroup
    Mark V. Lawson
    Semigroup Forum, 2020, 100 : 283 - 314
  • [34] Dense inverse subsemigroups of a topological inverse semigroup
    Recep Korkmaz
    Semigroup Forum, 2009, 78 : 528 - 535
  • [35] The groupoid approach to equilibrium states on right LCM semigroup C*-algebras
    Neshveyev, Sergey
    Stammeier, Nicolai
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01): : 220 - 250
  • [36] Ordered groupoid quotients and congruences on inverse semigroups
    Nouf Alyamani
    N. D. Gilbert
    Semigroup Forum, 2018, 96 : 506 - 522
  • [37] Inverse subsemigroups of the monogenic free inverse semigroup
    Oliveira, A
    Silva, PV
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) : 3887 - 3917
  • [38] Dense inverse subsemigroups of a topological inverse semigroup
    Korkmaz, Recep
    SEMIGROUP FORUM, 2009, 78 (03) : 528 - 535
  • [39] Ordered groupoid quotients and congruences on inverse semigroups
    Alyamani, Nouf
    Gilbert, N. D.
    SEMIGROUP FORUM, 2018, 96 (03) : 506 - 522
  • [40] THE ALGEBRA OF A COMBINATORIAL INVERSE SEMIGROUP
    MUNN, WD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (FEB): : 35 - 38