Two new triangles of q-integers via q-Eulerian polynomials of type A and B

被引:0
|
作者
Guoniu Han
Frédéric Jouhet
Jiang Zeng
机构
[1] Université de Strasbourg et CNRS,Institut de Recherche Mathématique Avancée
[2] Université de Lyon,undefined
[3] Université Lyon I,undefined
[4] CNRS,undefined
[5] UMR 5208 Institut Camille Jordan,undefined
来源
The Ramanujan Journal | 2013年 / 31卷
关键词
-Eulerian polynomials of type A and B; -tangent and ; -secant numbers; 05A30; 05A15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Eulerian polynomials can be expanded in the basis tk−1(1+t)n+1−2k (1≤k≤⌊(n+1)/2⌋) with positive integral coefficients. This formula implies both the symmetry and the unimodality of the Eulerian polynomials. In this paper, we prove a q-analogue of this expansion for Carlitz’s q-Eulerian polynomials as well as a similar formula for Chow–Gessel’s q-Eulerian polynomials of type B. We shall give some applications of these two formulas, which involve two new sequences of polynomials in the variable q with positive integral coefficients. It is an open problem to give a combinatorial interpretation for these polynomials.
引用
收藏
页码:115 / 127
页数:12
相关论文
共 50 条
  • [21] A new type of Szász–Mirakjan operators based on q-integers
    Pembe Sabancigil
    Nazim Mahmudov
    Gizem Dagbasi
    Journal of Inequalities and Applications, 2023
  • [22] General Gamma type operators based on q-integers
    Karsli, Harun
    Agrawal, P. N.
    Goyal, Meenu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 564 - 575
  • [23] BRENTI'S OPEN PROBLEM ON THE REAL-ROOTEDNESS OF q-EULERIAN POLYNOMIALS OF TYPE D
    Yang, Arthur L. B.
    Zhang, Philip B.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 918 - 926
  • [24] A new generalization of Leonardo hybrid numbers with q-integers
    Ozimamoglu, Hayrullah
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 325 - 334
  • [25] A new generalization of Leonardo hybrid numbers with q-integers
    Hayrullah Özimamoğlu
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 325 - 334
  • [26] Szasz-Baskakov type operators based on q-integers
    Agrawal, Purshottam N.
    Karsli, Harun
    Goyal, Meenu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [27] A New Type Bernstein Polynomials Depend On (p, q)-Integers
    Agyuz, Erkan
    Acikgoz, Mehmet
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [28] Sequential searches:: Proofreading, Russian roulette, and the incomplete q-Eulerian polynomials revisited
    Rawlings, D
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (08): : 713 - 720
  • [29] Stancu type generalization of modified Schurer operators based on q-integers
    Agrawal, P. N.
    Kumar, A. Sathish
    Sinha, T. A. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 765 - 776
  • [30] Szász-Baskakov type operators based on q-integers
    Purshottam N Agrawal
    Harun Karsli
    Meenu Goyal
    Journal of Inequalities and Applications, 2014