Two new triangles of q-integers via q-Eulerian polynomials of type A and B

被引:0
|
作者
Guoniu Han
Frédéric Jouhet
Jiang Zeng
机构
[1] Université de Strasbourg et CNRS,Institut de Recherche Mathématique Avancée
[2] Université de Lyon,undefined
[3] Université Lyon I,undefined
[4] CNRS,undefined
[5] UMR 5208 Institut Camille Jordan,undefined
来源
The Ramanujan Journal | 2013年 / 31卷
关键词
-Eulerian polynomials of type A and B; -tangent and ; -secant numbers; 05A30; 05A15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Eulerian polynomials can be expanded in the basis tk−1(1+t)n+1−2k (1≤k≤⌊(n+1)/2⌋) with positive integral coefficients. This formula implies both the symmetry and the unimodality of the Eulerian polynomials. In this paper, we prove a q-analogue of this expansion for Carlitz’s q-Eulerian polynomials as well as a similar formula for Chow–Gessel’s q-Eulerian polynomials of type B. We shall give some applications of these two formulas, which involve two new sequences of polynomials in the variable q with positive integral coefficients. It is an open problem to give a combinatorial interpretation for these polynomials.
引用
收藏
页码:115 / 127
页数:12
相关论文
共 50 条
  • [1] Two new triangles of q-integers via q-Eulerian polynomials of type A and B
    Han, Guoniu
    Jouhet, Frederic
    Zeng, Jiang
    RAMANUJAN JOURNAL, 2013, 31 (1-2): : 115 - 127
  • [2] A new bijection relating q-Eulerian polynomials
    Bigeni, Ange
    ADVANCES IN APPLIED MATHEMATICS, 2016, 81 : 212 - 239
  • [3] On some generalized q-Eulerian polynomials
    Lin, Zhicong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [4] A B-spline approach to q-Eulerian polynomials
    Disibuyuk, Cetin
    Ulutas, Sule
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
  • [5] On Permutation Weights and q-Eulerian Polynomials
    Aman Agrawal
    Caroline Choi
    Nathan Sun
    Annals of Combinatorics, 2020, 24 : 363 - 378
  • [6] STANCU POLYNOMIALS BASED ON THE Q-INTEGERS
    Xueyan Xiang (Lishui University
    Analysis in Theory and Applications, 2012, 28 (03) : 232 - 241
  • [7] On Permutation Weights and q-Eulerian Polynomials
    Agrawal, Aman
    Choi, Caroline
    Sun, Nathan
    ANNALS OF COMBINATORICS, 2020, 24 (02) : 363 - 378
  • [8] q-Eulerian polynomials and polynomials with only real zeros
    Ma, Shi-Mei
    Wang, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [9] The spiral property of q-Eulerian numbers of type B
    Wang, Zhe
    Zhu, Zhi-yong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 87 : 198 - 202
  • [10] A generalization of the Bernstein polynomials based on the q-integers
    Phillips, GM
    ANZIAM JOURNAL, 2000, 42 : 79 - 86