The Edwards–Wilkinson Limit of the Random Heat Equation in Dimensions Three and Higher

被引:0
|
作者
Yu Gu
Lenya Ryzhik
Ofer Zeitouni
机构
[1] Carnegie Mellon University,
[2] Stanford University,undefined
[3] Weizmann Institute of Science,undefined
来源
Communications in Mathematical Physics | 2018年 / 363卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the heat equation with a multiplicative Gaussian potential in dimensions d ≥ 3. We show that the renormalized solution converges to the solution of a deterministic diffusion equation with an effective diffusivity. We also prove that the renormalized large scale random fluctuations are described by the Edwards–Wilkinson model, that is, the stochastic heat equation (SHE) with additive white noise, with an effective variance.
引用
收藏
页码:351 / 388
页数:37
相关论文
共 50 条
  • [21] ON THE HEAT FLOW EQUATION OF SURFACES OF CONSTANT MEAN CURVATURE IN HIGHER DIMENSIONS
    谭忠
    吴国春
    ActaMathematicaScientia, 2011, 31 (05) : 1741 - 1748
  • [22] ON THE HEAT FLOW EQUATION OF SURFACES OF CONSTANT MEAN CURVATURE IN HIGHER DIMENSIONS
    Tan Zhong
    Wu Guochun
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1741 - 1748
  • [23] Heat statistics in the relaxation process of the Edwards-Wilkinson elastic manifold
    Wu, Yu-Xin
    Chen, Jin-Fu
    Pei, Ji-Hui
    Zhang, Fan
    Quan, H. T.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [24] Random walk on random walks: higher dimensions
    Blondel, Oriane
    Hilario, Marcelo R.
    dos Santos, Renato S.
    Sidoravicius, Vladas
    Teixeira, Augusto
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [25] The Yang-Mills heat equation with finite action in three dimensions
    Gross, Leonard
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 275 (1349) : 1 - +
  • [26] Infinite-disorder scaling of random quantum magnets in three and higher dimensions
    Kovacs, Istvan A.
    Igloi, Ferenc
    PHYSICAL REVIEW B, 2011, 83 (17)
  • [27] Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions
    R. Ferreira
    A. de Pablo
    Revista Matemática Complutense, 2018, 31 : 805 - 832
  • [28] Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions
    Ferreira, R.
    de Pablo, A.
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03): : 805 - 832
  • [29] Hausdorff dimension of the scaling limit of loop-erased random walk in three dimensions
    Shiraishi, Daisuke
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 791 - 834
  • [30] A new method to study stochastic growth equations: Application to the Edwards-Wilkinson equation
    Mattos, T. G.
    Moreira, J. G.
    Atman, A. P. F.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 746 - 749