On the Algebraic Dependence of Solutions of the Second Painlevé Equation

被引:0
|
作者
V. I. Gromak
机构
[1] Belarus State University,
来源
Differential Equations | 2002年 / 38卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Algebraic Dependence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:899 / 901
页数:2
相关论文
共 50 条
  • [31] Rational solutions for the discrete Painlevé II equation
    Kajiwara, Kenji
    Yamamoto, Kazushi
    Ohta, Yasuhiro
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 232 (3-4): : 189 - 199
  • [32] On some special solutions of the fifth painlevé equation
    Andreev F.V.
    Journal of Mathematical Sciences, 2000, 99 (1) : 802 - 807
  • [33] On unicity of meromorphic solutions to difference Painlevé equation
    Lü, Feng
    Wang, Yanfeng
    Lü, Weiran
    Mathematical Methods in the Applied Sciences, 2018, 41 (08): : 3093 - 3102
  • [34] Picard and Chazy solutions to the Painlevé VI equation
    Marta Mazzocco
    Mathematische Annalen, 2001, 321 : 157 - 195
  • [35] Rational solutions of Painlevé-Ⅱ equation as Gram determinant
    张晓恩
    陆冰滢
    Chinese Physics B, 2023, 32 (12) : 233 - 244
  • [36] The second Painlevé equation as a model for the electric field in a semiconductor
    Department of Applied Mathematics, Moscow Engineering Physics Institute, 31 Kashirskoe Shosse, Moscow 115409, Russia
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233 (4-6): : 397 - 400
  • [37] The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface
    A. V. Kashevarov
    Technical Physics, 2004, 49 : 1 - 7
  • [38] On special solutions to the Ermakov-Painlevé XXV equation
    Chichurin, Alexander
    Filipuk, Galina
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (01)
  • [39] Functional Relations Between Solutions of the Fifth Painlevé Equation
    V. I. Gromak
    G. V. Filipuk
    Differential Equations, 2001, 37 : 614 - 620
  • [40] All asymptotic expansions of solutions to the sixth Painlevé equation
    A. D. Bruno
    I. V. Goryuchkina
    Doklady Mathematics, 2007, 76 : 851 - 855