Classification of Poverty Condition Using Natural Language Processing

被引:0
|
作者
Guberney Muñetón-Santa
Daniel Escobar-Grisales
Felipe Orlando López-Pabón
Paula Andrea Pérez-Toro
Juan Rafael Orozco-Arroyave
机构
[1] Universidad de Antioquia,GITA Lab. Faculty of Engineering
[2] Universidad de Antioquia,Instituto de Estudios Regionales
[3] Friedrich Alexander-Universität,Pattern Recognition Lab.
来源
Social Indicators Research | 2022年 / 162卷
关键词
Poverty; Natural language processing; Text classification; Word embedding; Document-level embedding; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
This work introduces a methodology to classify between poor and extremely poor people through Natural Language Processing. The approach serves as a baseline to understand and classify poverty through the people’s discourses using machine learning algorithms. Based on classical and modern word vector representations we propose two strategies for document level representations: (1) document-level features based on the concatenation of descriptive statistics and (2) Gaussian mixture models. Three classification methods are systematically evaluated: Support Vector Machines, Random Forest, and Extreme Gradient Boosting. The fourth best experiments yielded around 55% of accuracy, while the embeddings based on GloVe word vectors yielded a sensitivity of 79.6% which could be of great interest for the public policy makers to accurately find people who need to be prioritized in social programs.
引用
收藏
页码:1413 / 1435
页数:22
相关论文
共 50 条
  • [31] Automated Construction of Bridge Condition Inventory Using Natural Language Processing and Historical Inspection Reports
    Li, Tianshu
    Harris, Devin K.
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XIII, 2019, 10971
  • [32] Processing natural language without natural language processing
    Brill, E
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, PROCEEDINGS, 2003, 2588 : 360 - 369
  • [33] An approach for applying natural language processing to image classification problems
    Astolfi, Gilberto
    Sant'Ana, Diego Andre
    Porto, Joao Vitor de Andrade
    Rezende, Fabio Prestes Cesar
    Tetila, Everton Castelao
    Matsubara, Edson Takashi
    Pistori, Hemerson
    NEUROCOMPUTING, 2022, 513 : 372 - 382
  • [34] From natural language to accounting entries using a natural language processing method
    Chen, Yasheng
    Huang, Xian
    Wu, Zhuojun
    ACCOUNTING AND FINANCE, 2023, 63 (04): : 3781 - 3795
  • [35] Text classification in natural language using Wikipedia
    Quinteiro-González, Jose María
    Martel-Jordán, Ernestina
    Hernández-Morera, Pablo
    Ligero-Fleitas, Juan A.
    López-Rodriguez, Aaron
    RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2011, (08): : 39 - 52
  • [36] Classification of Sentiments of the Roman Urdu Reviews of Daraz Products using Natural Language Processing Approach
    Talat, Muneeba
    Asim, Hira
    Asmat, Ayesha
    4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2, 2021, : 739 - 744
  • [37] Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records
    Zhao, Sizheng Steven
    Hong, Chuan
    Cai, Tianrun
    Xu, Chang
    Huang, Jie
    Ermann, Joerg
    Goodson, Nicola J.
    Solomon, Daniel H.
    Cai, Tianxi
    Liao, Katherine P.
    RHEUMATOLOGY, 2020, 59 (05) : 1059 - 1065
  • [38] DEVELOPING A DIGITAL ARCHAEOLOGY CLASSIFICATION SYSTEM USING NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING TECHNIQUES
    Caravale, Alessandra
    Moscati, Paola
    Duran-Silva, Nicolau
    Grimau, Berta
    Rondelli, Bernardo
    ARCHEOLOGIA E CALCOLATORI, 2023, 34 (02): : 9 - 32
  • [39] A domain adaptation approach for resume classification using graph attention networks and natural language processing
    Trinh, Thi-Thuy-Quynh
    Chung, Yu-Chi
    Kuo, R. J.
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [40] Evaluating the Effect of Weather on Tourist Revisit Intention using Natural Language Processing and Classification Techniques
    Christodoulou, Evripides
    Gregoriades, Andreas
    Pampaka, Maria
    Herodotou, Herodotos
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2479 - 2484