Classification of Poverty Condition Using Natural Language Processing

被引:0
|
作者
Guberney Muñetón-Santa
Daniel Escobar-Grisales
Felipe Orlando López-Pabón
Paula Andrea Pérez-Toro
Juan Rafael Orozco-Arroyave
机构
[1] Universidad de Antioquia,GITA Lab. Faculty of Engineering
[2] Universidad de Antioquia,Instituto de Estudios Regionales
[3] Friedrich Alexander-Universität,Pattern Recognition Lab.
来源
Social Indicators Research | 2022年 / 162卷
关键词
Poverty; Natural language processing; Text classification; Word embedding; Document-level embedding; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
This work introduces a methodology to classify between poor and extremely poor people through Natural Language Processing. The approach serves as a baseline to understand and classify poverty through the people’s discourses using machine learning algorithms. Based on classical and modern word vector representations we propose two strategies for document level representations: (1) document-level features based on the concatenation of descriptive statistics and (2) Gaussian mixture models. Three classification methods are systematically evaluated: Support Vector Machines, Random Forest, and Extreme Gradient Boosting. The fourth best experiments yielded around 55% of accuracy, while the embeddings based on GloVe word vectors yielded a sensitivity of 79.6% which could be of great interest for the public policy makers to accurately find people who need to be prioritized in social programs.
引用
下载
收藏
页码:1413 / 1435
页数:22
相关论文
共 50 条
  • [1] Classification of Poverty Condition Using Natural Language Processing
    Muneton-Santa, Guberney
    Escobar-Grisales, Daniel
    Orlando Lopez-Pabon, Felipe
    Perez-Toro, Paula Andrea
    Rafael Orozco-Arroyave, Juan
    SOCIAL INDICATORS RESEARCH, 2022, 162 (03) : 1413 - 1435
  • [2] ENRICHING PSYCHOTIC DISORDER CLASSIFICATION USING NATURAL LANGUAGE PROCESSING
    Patel, Rashmi
    Jackson, Richard
    Stewart, Robert
    McGuire, Philip
    SCHIZOPHRENIA BULLETIN, 2018, 44 : S154 - S155
  • [3] Real and Fake News Classification Using Natural Language Processing
    Kumar, Shivam
    Krishnan, C. Santhana
    Ramya, M.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1535 - 1540
  • [4] E-Mail Classification Using Natural Language Processing
    Sel, Ilhami
    Hanbay, Davut
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [5] Diagnosis Classification in the Emergency Room Using Natural Language Processing
    Van Buchem, Marieke M.
    Hart, Hanna H. T.
    Mosteiro, Pablo J.
    Kant, Ilse M. J.
    Bauer, Martijn P.
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 815 - 816
  • [6] Hotel Classification Visualization Using Natural Language Processing of User Reviews
    Suzuki, Takayuki
    Gemba, Kiminori
    Aoyama, Atsushi
    2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM 2013), 2013, : 892 - 895
  • [7] Suicide Note Classification Using Natural Language Processing: A Content Analysis
    Pestian, John
    Nasrallah, Henry
    Matykiewicz, Pawel
    Bennett, Aurora
    Leenaars, Antoon
    BIOMEDICAL INFORMATICS INSIGHTS, 2010, 3 : 19 - 28
  • [8] Toward an Automatic Classification of Negotiation Styles using Natural Language Processing
    Pacella, Daniela
    Dell'Aquila, Elena
    Marocco, Davide
    Furnell, Steven
    INTELLIGENT VIRTUAL AGENTS, IVA 2017, 2017, 10498 : 339 - 342
  • [9] Clinical Report Classification Using Natural Language Processing and Topic Modeling
    Sarioglu, Efsun
    Choi, Hyeong-Ah
    Yadav, Kabir
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 204 - 209
  • [10] Automated Classification of NASA Anomalies Using Natural Language Processing Techniques
    Falessi, Davide
    Layman, Lucas
    2013 IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS (ISSREW), 2013, : 5 - 6