Investigation of the widely applicable Bayesian information criterion

被引:0
|
作者
N. Friel
J. P. McKeone
C. J. Oates
A. N. Pettitt
机构
[1] University College Dublin,School of Mathematics and Statistics and Insight Centre for Data Analytics
[2] University of Technology Sydney,School of Mathematical and Physical Sciences
[3] Queensland University of Technology,School of Mathematical Sciences
[4] Australian Research Council Centre for Excellence in Mathematical and Statistical Frontiers,undefined
来源
Statistics and Computing | 2017年 / 27卷
关键词
Marginal likelihood; Evidence; Power posteriors; Widely applicable Bayesian information criterion;
D O I
暂无
中图分类号
学科分类号
摘要
The widely applicable Bayesian information criterion (WBIC) is a simple and fast approximation to the model evidence that has received little practical consideration. WBIC uses the fact that the log evidence can be written as an expectation, with respect to a powered posterior proportional to the likelihood raised to a power t∗∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^*\in {(0,1)}$$\end{document}, of the log deviance. Finding this temperature value t∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^*$$\end{document} is generally an intractable problem. We find that for a particular tractable statistical model that the mean squared error of an optimally-tuned version of WBIC with correct temperature t∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^*$$\end{document} is lower than an optimally-tuned version of thermodynamic integration (power posteriors). However in practice WBIC uses the a canonical choice of t=1/log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1/\log (n)$$\end{document}. Here we investigate the performance of WBIC in practice, for a range of statistical models, both regular models and singular models such as latent variable models or those with a hierarchical structure for which BIC cannot provide an adequate solution. Our findings are that, generally WBIC performs adequately when one uses informative priors, but it can systematically overestimate the evidence, particularly for small sample sizes.
引用
收藏
页码:833 / 844
页数:11
相关论文
共 50 条
  • [21] Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models
    Liu, Qin
    Charleston, Michael A.
    Richards, Shane A.
    Holland, Barbara R.
    SYSTEMATIC BIOLOGY, 2023, 72 (01) : 92 - 105
  • [22] Improved Bayesian information criterion for mixture model selection
    Mehrjou, Arash
    Hosseini, Reshad
    Araabi, Babak Nadjar
    PATTERN RECOGNITION LETTERS, 2016, 69 : 22 - 27
  • [23] Spectral Library Clustering Using a Bayesian Information Criterion
    Piper, Jonathan
    Duselis, John
    2016 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2016, : 66 - 70
  • [24] Defect Prediction Using Akaike and Bayesian Information Criterion
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1117 - 1127
  • [25] Bayesian Information Criterion in LTE Downlink Scheduling Algorithm
    Anwar, Khairul
    Wee, KuokKwee
    Cheah, WooiPing
    Wee, YitYin
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (04) : 650 - 660
  • [26] Corrected Bayesian Information Criterion for Stochastic Block Models
    Hu, Jianwei
    Qin, Hong
    Yan, Ting
    Zhao, Yunpeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 1771 - 1783
  • [27] Comments on "A critique of the Bayesian information criterion for model selection"
    Firth, D
    Kuha, J
    SOCIOLOGICAL METHODS & RESEARCH, 1999, 27 (03) : 398 - 402
  • [28] BAYESIAN INFORMATION CRITERION FOR MULTIDIMENSIONAL SINUSOIDAL ORDER SELECTION
    Xiong, Jie
    Liu, Kefei
    da Costa, Joao Paulo C. L.
    Wang, Wen-Qin
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3106 - 3110
  • [29] On Cycle-Period Estimation: A Bayesian Information Criterion
    Zhao, Yuan
    Ke, Xiaochuan
    Huang, Lei
    Xiao, Yuhang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (04) : 3949 - 3954
  • [30] Wilcoxon-type generalized Bayesian information criterion
    Wang, Lan
    BIOMETRIKA, 2009, 96 (01) : 163 - 173