Approximate amenability of Banach category algebras with application to semigroup algebras

被引:0
|
作者
M. Maysami Sadr
A. Pourabbas
机构
[1] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
来源
Semigroup Forum | 2009年 / 79卷
关键词
Approximate amenability; Semigroup algebra; Brandt semigroup; Small category;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a small category. Then we consider ℓ1(C) as the ℓ1 algebra over the morphisms of C, with convolution product and also consider \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^{1}(\hat{C})$\end{document} as the ℓ1 algebra over the objects of C, with pointwise multiplication. The main purpose of this paper is to show that approximate amenability of ℓ1(C) implies of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^{1}(\hat{C})$\end{document} and clearly this implies that C has only finitely many objects. Some applications are given, the main one is the characterization of approximate amenability for ℓ1(S), where S is a Brandt semigroup, which corrects a result of Lashkarizadeh Bami and Samea (Semigroup Forum 71:312–322, 2005).
引用
收藏
页码:55 / 64
页数:9
相关论文
共 50 条
  • [31] Approximate Connes-amenability of dual Banach algebras
    Esslamzadeh, G. H.
    Shojaee, B.
    Mahmoodi, A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (02) : 193 - 213
  • [32] SOME RESULTS ON APPROXIMATE CHARACTER AMENABILITY OF BANACH ALGEBRAS
    Shojaee, B.
    Bodachi, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (02): : 197 - 204
  • [33] ON GENERALIZED NOTIONS OF APPROXIMATE AMENABILITY AND BIFLATNESS ON BANACH ALGEBRAS
    Department of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran
    不详
    UPB Sci Bull Ser A, 3 (29-40):
  • [34] ON GENERALIZED NOTIONS OF APPROXIMATE AMENABILITY AND BIFLATNESS ON BANACH ALGEBRAS
    Bodaghi, Abasalt
    Valaei, Mohammad
    Zivari-Kazempour, Abbas
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 29 - 40
  • [35] On φ-amenability of Banach algebras
    Kaniuth, Eberhard
    Lau, Anthony T.
    Pym, John
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 85 - 96
  • [36] φ-AMENABILITY OF BANACH ALGEBRAS
    Ghaffari, A.
    Alinejad, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (03) : 725 - 738
  • [37] APPROXIMATE IDEAL CONNES AMENABILITY OF DUAL BANACH ALGEBRAS AND IDEAL CONNES AMENABILITY OF DISCRETE BEURLING ALGEBRAS
    Minapoor, A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (02): : 72 - 85
  • [38] Module amenability for semigroup algebras
    Amini, M
    SEMIGROUP FORUM, 2004, 69 (02) : 243 - 254
  • [39] On character amenability of semigroup algebras
    R. Gholami
    H. Rahimi
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 517 - 524
  • [40] On character amenability of semigroup algebras
    Ghaffari, A.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (1-2) : 177 - 192