Heisenberg Uncertainty Principles for the Dunkl-Type Fock Space

被引:0
|
作者
Fethi Soltani
Meriem Nenni
机构
[1] Université de Tunis El Manar,Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11
[2] Université de Carthage,Ecole Nationale d’Ingénieurs de Carthage
来源
关键词
Dunkl-type Fock sapce; Hilber spaces; Uncertainty principles; 30H20; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish uncertainty principles of Heisenberg type for the Dunkl-type Fock space Fα(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha }(\mathbb {C}^d)$$\end{document} associated with the Coxeter group Z2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d_2$$\end{document}. These results give a generalization of the results of Chen and Zhu in the paper [Uncertainty principles for the Fock space. Sci Sinica Math 45(11):1847–1854, 2015].
引用
收藏
相关论文
共 50 条
  • [41] Energy spectrum symmetry of Heisenberg model in Fock space
    Wang An-Min
    Zhu Ren-Gui
    CHINESE PHYSICS LETTERS, 2006, 23 (09) : 2542 - 2544
  • [42] A Dunkl-Type Generalization of Szasz-Kantorovich Operators via Post-Quantum Calculus
    Nasiruzzaman, Md
    Mukheimer, Aiman
    Mursaleen, M.
    SYMMETRY-BASEL, 2019, 11 (02):
  • [43] Some uncertainty principles for the quaternion Heisenberg group
    Bouhrara, Adil
    Kabbaj, Samir
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
  • [44] Heisenberg Uncertainty Principles for an Oscillatory Integral Operator
    Castro, L. P.
    Guerra, R. C.
    Tuan, N. M.
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [45] Approximation of Functions by Dunkl-Type Generalization of Szasz-Durrmeyer Operators Based on (p, q)-Integers
    Alotaibi, Abdullah
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [46] Uncertainty principles for the Weinstein type Segal-Bargmann space
    Soltani F.
    Saadi H.
    Journal of Mathematical Sciences, 2023, 271 (4) : 468 - 481
  • [48] Inversion theorem and quantitative uncertainty principles for the Dunkl Gabor transform on Rd
    Mejjaoli, Hatem
    Sraieb, Nadia
    Trimeche, Khalifa
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 883 - 913
  • [49] On the Heisenberg algebra in Bargmann-Fock space with natural cutoffs
    Nozari, K.
    Roushan, M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (05)
  • [50] Heisenberg Algebra in the Bargmann-Fock Space with Natural Cutoffs
    Roushan, Maryam
    Nozari, Kourosh
    ADVANCES IN HIGH ENERGY PHYSICS, 2014, 2014