Lagrangian mean curvature flows and moment maps

被引:0
|
作者
Hiroshi Konno
机构
[1] Meiji University,Department of Mathematics, School of Science and Technology
来源
Geometriae Dedicata | 2019年 / 198卷
关键词
Mean curvature flow; Lagrangian submanifold; Moment map; 53C44; 53D12; 53D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct various examples of Lagrangian mean curvature flows in Calabi–Yau manifolds, using moment maps for actions of abelian Lie groups on them. The examples include Lagrangian self-shrinkers and translating solitons in the Euclidean spaces. Moreover, our method can be applied to construct examples of Lagrangian mean curvature flows in non-flat Calabi–Yau manifolds. In particular, we describe Lagrangian mean curvature flows in 4-dimensional Ricci-flat ALE spaces in detail and investigate their singularities.
引用
收藏
页码:103 / 130
页数:27
相关论文
共 50 条
  • [21] Lagrangian mean curvature flow with boundary
    Evans, Christopher G.
    Lambert, Ben
    Wood, Albert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [22] On symplectic mean curvature flows
    Han X.
    Li J.
    Frontiers of Mathematics in China, 2007, 2 (1) : 47 - 60
  • [23] Scalar curvature, mean curvature and harmonic maps to the circle
    Xiaoxiang Chai
    Inkang Kim
    Annals of Global Analysis and Geometry, 2022, 62 : 201 - 219
  • [24] Scalar curvature, mean curvature and harmonic maps to the circle
    Chai, Xiaoxiang
    Kim, Inkang
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (01) : 201 - 219
  • [25] Hessian estimates for Lagrangian mean curvature equation
    Arunima Bhattacharya
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [26] Lagrangian mean curvature flow of Whitney spheres
    Savas-Halilaj, Andreas
    Smoczyk, Knut
    GEOMETRY & TOPOLOGY, 2019, 23 (02) : 1057 - 1084
  • [27] Longtime existence of the Lagrangian mean curvature flow
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 25 - 46
  • [28] THE DIRICHLET PROBLEM FOR THE LAGRANGIAN MEAN CURVATURE EQUATION
    Bhattacharya, Arunima
    ANALYSIS & PDE, 2024, 17 (08):
  • [29] Ancient solutions in Lagrangian mean curvature flow
    Lambert, Ben
    Lotay, Jason D.
    Schulze, Felix
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (03) : 1169 - 1205
  • [30] Mean curvature flow of monotone Lagrangian submanifolds
    K. Groh
    M. Schwarz
    K. Smoczyk
    K. Zehmisch
    Mathematische Zeitschrift, 2007, 257 : 295 - 327