Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit

被引:0
|
作者
Beibei Xu
Diyi Chen
Hao Zhang
Rui Zhou
机构
[1] Northwest A&F University,Institute of Water Resources and Hydropower Research
来源
Nonlinear Dynamics | 2015年 / 81卷
关键词
Hydro-turbine-generator unit; Fractional order; Nonlinear dynamics; Mathematical modeling;
D O I
暂无
中图分类号
学科分类号
摘要
In order to study the stability of a hydro-turbine-generator unit in further depth, we establish a novel nonlinear fractional-order mathematical model considering a fractional-order damping force, a fractional-order oil-film force, an asymmetric magnetic pull and a hydraulic-asymmetric force. Furthermore, the nonlinear dynamics of the above fractional-order hydro-turbine-generator unit system with six typical fractional orders are studied in detail. Based on these, we analyze the effect of the fractional-order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} on bifurcation points, the orbit of centroid of the rotor, the power and the frequency of the rotor. Fortunately, some variable laws are found from numerical simulation results. Finally, all of these results have enriched the dynamical behaviors of a hydro-turbine-generator system.
引用
收藏
页码:1263 / 1274
页数:11
相关论文
共 50 条
  • [41] Dynamic analysis and synchronization of conformable fractional-order chaotic systems
    Wang, Yan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (11):
  • [42] Dynamic analysis of a class of fractional-order dry friction oscillators
    Si, Jialin
    Xie, Jiaquan
    Zhao, Peng
    Wang, Haijun
    Wang, Jinbin
    Hao, Yan
    Ren, Jiani
    Shi, Wei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1037 - 1055
  • [43] Dynamic analysis of a fractional-order predator–prey model with harvesting
    Kshirod Sarkar
    Biswajit Mondal
    International Journal of Dynamics and Control, 2023, 11 : 1518 - 1531
  • [44] Fractional-Order models for the static and dynamic analysis of nonlocal plates
    Patnaik, Sansit
    Sidhardh, Sai
    Semperlotti, Fabio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [45] Dynamic analysis of the discrete fractional-order Rulkov neuron map
    Vivekanandhan, Gayathri
    Abdolmohammadi, Hamid Reza
    Natiq, Hayder
    Rajagopal, Karthikeyan
    Jafari, Sajad
    Namazi, Hamidreza
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (03) : 4760 - 4781
  • [46] Dynamic analysis of a class of fractional-order neural networks with delay
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Ma, Tiedong
    Zhai, Houzhen
    NEUROCOMPUTING, 2013, 111 : 190 - 194
  • [47] Dynamic analysis of the fractional-order Liu system and its synchronization
    Wang, Xing-yuan
    Wang, Ming-jun
    CHAOS, 2007, 17 (03)
  • [48] Grid-connection analysis of hydro-turbine generator unit with stochastic disturbance
    Liu, Jing
    Xu, Beibei
    Chen, Diyi
    Li, Jianling
    Gao, Xiang
    Liu, Gongcheng
    IET RENEWABLE POWER GENERATION, 2019, 13 (03) : 500 - 509
  • [49] Dynamic response analysis of the fractional-order system of MEMS viscometer
    He, X.S.
    Liu, Q.X.
    Huang, X.C.
    Chen, Y.M.
    CMES - Computer Modeling in Engineering and Sciences, 2015, 108 (03): : 159 - 169
  • [50] Dynamic Response Analysis of the Fractional-Order System of MEMS Viscometer
    He, X. S.
    Liu, Q. X.
    Huang, X. C.
    Chen, Y. M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 108 (03): : 159 - 169