Robust Gradient-Like Property and Controller Design for Uncertain Pendulum-Like Systems

被引:0
|
作者
Jin-Zhi Wang
Zhi-Sheng Duan
Lin Huang
机构
[1] Department of Mechanics and Engineering Science,State Key Laboratory for Turbulence and Complex Systems
[2] Peking University,undefined
关键词
Uncertainty; nonlinear pendulum-like systems; gradient-like property; controller design;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the gradient-like behavior for the pendulum-like systems with additive, multiplicative, and H∞ uncertainties is analyzed. Then some conditions ensuring existence of controllers for uncertain pendulum-like systems are given. The corresponding controller design problem is transformed into H∞ control problem. Two examples are given to illustrate the effectiveness of the method.
引用
收藏
页码:229 / 246
页数:17
相关论文
共 50 条
  • [21] Pendulum-like systems in Hilbert spaces and Lagrange stability
    Liu, Chao
    Huang, Lin
    Feng, Dexing
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 17 - +
  • [22] Frequency theorem in dynamics of pendulum-like feedback systems
    Leonov, GA
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 1229 - 1231
  • [23] Low frequency Lagrange stabilization for pendulum-like systems
    Li, Peng
    Wang, Yijing
    Zuo, Zhiqiang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (10) : 4856 - 4868
  • [24] Control of a class of pendulum-like systems with Lagrange stability
    Wang, JZ
    Duan, ZS
    Huang, L
    AUTOMATICA, 2006, 42 (01) : 145 - 150
  • [25] Families of Portraits of Some Pendulum-Like Systems in Dynamics
    Shamolin M.V.
    Journal of Applied and Industrial Mathematics, 2020, 14 (04) : 769 - 778
  • [26] CONVERGENCE IN GRADIENT-LIKE SYSTEMS WITH APPLICATIONS TO PDE
    HALE, JK
    RAUGEL, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (01): : 63 - 124
  • [27] Large subharmonics of pendulum-like equations
    Krasnosel'skii, AM
    Pokrovskii, A
    FIRST 60 YEARS OF NONLINEAR ANALYSIS OF JEAN MAWHIN, 2004, : 103 - 116
  • [28] Forced Solutions of Disturbed Pendulum-like Lur'e Systems
    Smirnova, Vera B.
    Proskurnikov, Anton V.
    Utina, Natalia V.
    Titov, Roman V.
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 748 - 753
  • [29] Pendulum-like oscillatory adaptive catalysis
    Zhao, Wuchao
    He, Jianghua
    Zhang, Yuetao
    Chen, Eugene Y. -X.
    TRENDS IN CHEMISTRY, 2024, 6 (10): : 641 - 642
  • [30] Critical damping of the second-order pendulum-like systems
    Li Xin-bin
    Huang Yong-nian
    Yang Ying
    Huang Lin
    Applied Mathematics and Mechanics, 2005, 26 (1) : 7 - 16