Counting electrons on supported nanoparticles

被引:0
|
作者
Lykhach Y. [1 ]
Kozlov S.M. [2 ]
Skála T. [3 ]
Tovt A. [3 ]
Stetsovych V. [3 ]
Tsud N. [3 ]
Dvořák F. [3 ]
Johánek V. [3 ]
Neitzel A. [1 ]
Mysliveček J. [3 ]
Fabris S. [4 ]
Matolín V. [3 ]
Neyman K.M. [2 ,5 ]
Libuda J. [1 ,6 ]
机构
[1] Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen
[2] Departament de Química Física, Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, Barcelona
[3] Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague 8
[4] CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, SISSA, Via Bonomea 265, Trieste
[5] Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
[6] Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen
关键词
D O I
10.1038/nmat4500
中图分类号
学科分类号
摘要
Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:284 / 288
页数:4
相关论文
共 50 条
  • [31] Oxidation states, naturally: A NBO view of counting electrons
    D'Acchioli, Jason
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [32] Measuring current by counting electrons in a nanowire quantum dot
    Gustavsson, S.
    Shorubalko, I.
    Leturcq, R.
    Schon, S.
    Ensslin, K.
    APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [33] Full counting statistics for the number of electrons in a quantum dot
    Utsumi, Yasuhiro
    PHYSICAL REVIEW B, 2007, 75 (03)
  • [34] Rules for counting electrons and three-dimensional aromaticity
    B. A. Shainyan
    Russian Journal of Organic Chemistry, 2006, 42 : 304 - 306
  • [35] Rules for counting electrons and three-dimensional aromaticity
    Shainyan, BA
    RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, 2006, 42 (02) : 304 - 306
  • [36] Counting the electrons in a multiphoton ionization by elastic scattering of microwaves
    Sharma, A.
    Slipchenko, M. N.
    Shneider, M. N.
    Wang, X.
    Rahman, K. A.
    Shashurin, A.
    SCIENTIFIC REPORTS, 2018, 8
  • [37] Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres
    Rasamani, Kowsalya Devi
    Sun, Yugang
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (08):
  • [38] EXPERIMENTS WITH SUPPORTED NANOPARTICLES
    SCHNEIDER, WD
    ANALUSIS, 1993, 21 (08) : M20 - M22
  • [39] Morphology of supported nanoparticles
    Henry, CR
    PROGRESS IN SURFACE SCIENCE, 2005, 80 (3-4) : 92 - 116
  • [40] Detection, Counting, and Imaging of Single Nanoparticles
    Wang, Wei
    Tao, Nongjian
    ANALYTICAL CHEMISTRY, 2014, 86 (01) : 2 - 14