Counting electrons on supported nanoparticles

被引:0
|
作者
Lykhach Y. [1 ]
Kozlov S.M. [2 ]
Skála T. [3 ]
Tovt A. [3 ]
Stetsovych V. [3 ]
Tsud N. [3 ]
Dvořák F. [3 ]
Johánek V. [3 ]
Neitzel A. [1 ]
Mysliveček J. [3 ]
Fabris S. [4 ]
Matolín V. [3 ]
Neyman K.M. [2 ,5 ]
Libuda J. [1 ,6 ]
机构
[1] Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen
[2] Departament de Química Física, Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, Barcelona
[3] Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague 8
[4] CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, SISSA, Via Bonomea 265, Trieste
[5] Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
[6] Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen
关键词
D O I
10.1038/nmat4500
中图分类号
学科分类号
摘要
Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:284 / 288
页数:4
相关论文
共 50 条
  • [1] Counting electrons on supported nanoparticles
    Lykhach, Yaroslava
    Kozlov, Sergey M.
    Skala, Tomas
    Tovt, Andrii
    Stetsovych, Vitalii
    Tsud, Nataliya
    Dvorak, Filip
    Johanek, Viktor
    Neitzel, Armin
    Myslivecek, Josef
    Fabris, Stefano
    Matolin, Vladimir
    Neyman, Konstantin M.
    Libuda, Joerg
    NATURE MATERIALS, 2016, 15 (03) : 284 - +
  • [2] Counting electrons
    Anon
    Chemical and Engineering News, 2001, 79 (23):
  • [3] Counting Electrons in Electrides
    Weaver, Samuel M.
    Sundberg, Jack D.
    Slamowitz, Connor C.
    Radomsky, Rebecca C.
    Lanetti, Matthew G.
    McRae, Lauren M.
    Warren, Scott C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (48) : 26472 - 26476
  • [4] COUNTING ATOMS AND ELECTRONS
    Curtiss, L. F.
    SCIENTIFIC MONTHLY, 1928, 27 : 398 - 409
  • [5] Electrochemical Quantifying, Counting, and Sizing Supported Pt Nanoparticles in Real Time
    Huang, Jing-Fang
    Yang, Hui-Wen
    ANALYTICAL CHEMISTRY, 2016, 88 (12) : 6403 - 6409
  • [6] 18 electrons and counting
    Armentrout, P. B.
    SCIENCE, 2018, 361 (6405) : 849 - 850
  • [7] Counting electrons one by one
    Devoret, M
    PHYSICS WORLD, 2005, 18 (06) : 24 - 25
  • [8] Bidirectional counting of single electrons
    Fujisawa, T
    Hayashi, T
    Tomita, R
    Hirayama, Y
    SCIENCE, 2006, 312 (5780) : 1634 - 1636
  • [9] Counting statistics for entangled electrons
    Taddei, F
    Fazio, R
    PHYSICAL REVIEW B, 2002, 65 (07): : 0753171 - 0753177
  • [10] Counting statistics of cotunneling electrons
    Emary, Clive
    PHYSICAL REVIEW B, 2009, 80 (23):