A note on testing for nonstationarity in autoregressive processes with level dependent conditional heteroskedasticity

被引:0
|
作者
Paulo M. M. Rodrigues
Antonio Rubia
机构
[1] University of Algarve,Faculty of Economics
[2] University of Alicante,Department of Financial Economics
来源
Statistical Papers | 2008年 / 49卷
关键词
Maximum likelihood estimation; Nonstationarity; Volatility; Interest rates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the empirical distribution and the statistical properties of maximum likelihood (ML) unit-root t-statistics computed from data sampled from a first-order autoregressive (AR) process with level-dependent conditional heteroskedasticity (LDCH). This issue is of particular importance for applications on interest rate time-series. Unfortunately, the extent of the technical complexity related associated to LDCH patterns does not offer a feasible theoretical analysis, and there is no formal knowledge about the finite-sample size and power behaviour or the ML test for this context. Our analysis provides valuable guidelines for applied work and directions for future work.
引用
收藏
页码:581 / 593
页数:12
相关论文
共 50 条
  • [31] Pricing Accelerated Simulation Theory of Generalized Autoregressive Conditional Heteroskedasticity Model
    Ma J.
    Zhuo J.
    Zhang J.
    Chen L.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (03): : 435 - 443
  • [32] Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity
    Hafner, Christian M.
    Herwartz, Helmut
    STATISTICA NEERLANDICA, 2009, 63 (03) : 294 - 323
  • [33] Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model
    Silvennoinen, Annastiina
    Terasvirta, Timo
    JOURNAL OF FINANCIAL ECONOMETRICS, 2009, 7 (04) : 373 - 411
  • [34] A note on compatibility of conditional autoregressive models
    Dreassi, Emanuela
    Rigo, Pietro
    STATISTICS & PROBABILITY LETTERS, 2017, 125 : 9 - 16
  • [35] Testing identification via heteroskedasticity in structural vector autoregressive models
    Luetkepohl, Helmut
    Meitz, Mika
    Netsunajev, Aleksei
    Saikkonen, Pentti
    ECONOMETRICS JOURNAL, 2021, 24 (01): : 1 - 22
  • [36] Asymptotic and bootstrap inference for ar(∞) processes with conditional heteroskedasticity
    Goncalves, Silvia
    Kilian, Lutz
    ECONOMETRIC REVIEWS, 2007, 26 (06) : 609 - 641
  • [37] Modeling of Sugar Prices Volatility in India using Autoregressive Conditional Heteroskedasticity Models
    Gamit, Pooja
    Leua, Alpesh
    Tandel, Vishal
    INDIAN JOURNAL OF ECONOMICS AND DEVELOPMENT, 2018, 14 (1A) : 256 - 259
  • [38] Use of Autoregressive Conditional Heteroskedasticity Model to Assess Gear Tooth Surface Roughness
    Chen, Yuejian
    Feng, Ke
    Randall, Robert B.
    Borghesani, Pietro
    Zuo, Ming Jian
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [39] Structural Nonlinear Damage Identification Based on Autoregressive Conditional Heteroskedasticity Conversion Index
    Guo H.
    Wang Z.
    Li Z.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2020, 55 (03): : 459 - 466and517
  • [40] Identification of a Class of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models with Applications to Covariance Propagation
    Wang, Y.
    Sznaier, M.
    Camps, O.
    Pait, F.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 795 - 800