Modified Spherical Harmonics

被引:0
|
作者
Heinz Leutwiler
机构
[1] University of Erlangen-Nuremberg,Mathematical Institute
来源
关键词
30G35; Spherical harmonics; Generalized axially symmetric potentials; Generalized function theory; Hyperbolic metric;
D O I
暂无
中图分类号
学科分类号
摘要
A modification of the classical theory of spherical harmonics is presented. The unit sphere S in R3={(x,y,t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3 = \{(x,y,t)\}}$$\end{document} is replaced by the half-sphere S+ in the upper half space, the Euclidean scalar product on S by a non-Euclidean one on S+, and the Laplace equation Δh=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta h = 0}$$\end{document} by the equation tΔv+∂v∂t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\Delta v + \frac{\partial v }{\partial t}= 0}$$\end{document}. It will be shown that most results from the theory of spherical harmonics in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} stay valid in this modified setting.
引用
收藏
页码:1479 / 1502
页数:23
相关论文
共 50 条
  • [31] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    ALTMANN, SL
    BRADLEY, CJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 255 (1054) : 199 - 215
  • [32] EQUIVALENT SPHERICAL HARMONICS
    SCHMELZER, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, 11 (04) : 561 - 576
  • [33] Deringing Spherical Harmonics
    Sloan, Peter-Pike
    IGGRAPH ASIA 2017 TECHNICAL BRIEFS (SA'17), 2017,
  • [34] SPHERICAL HARMONICS SUPERSEDED
    不详
    NATURE, 1970, 225 (5232) : 501 - &
  • [35] Spherical harmonics scaling
    Jiaping Wang
    Kun Xu
    Kun Zhou
    Stephen Lin
    Shimin Hu
    Baining Guo
    The Visual Computer, 2006, 22 : 713 - 720
  • [36] GENERALIZATION OF SPHERICAL HARMONICS
    SHAFER, RE
    SIAM REVIEW, 1973, 15 (03) : 658 - 663
  • [37] SPHERICAL HARMONICS ON GRASSMANNIANS
    Howe, Roger
    Lee, Soo Teck
    COLLOQUIUM MATHEMATICUM, 2010, 118 (01) : 349 - 364
  • [38] Spherical Harmonics and the Icosahedron
    Hitchin, Nigel
    GROUPS AND SYMMETRIES: FROM NEOLITHIC SCOTS TO JOHN MCKAY, 2009, 47 : 215 - 231
  • [39] CUBIC HARMONICS AS LINEAR COMBINATIONS OF SPHERICAL HARMONICS
    MUGGLI, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (02): : 311 - &
  • [40] Generating Functions for Spherical Harmonics and Spherical Monogenics
    P. Cerejeiras
    U. Kähler
    R. Lávička
    Advances in Applied Clifford Algebras, 2014, 24 : 995 - 1004