It is shown that a 25(20)% difference between the decay constants \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f_{D_s } $$
\end{document} (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{B_s} $$\end{document}) and fD(fB) occurs due to large differences in the pole masses of the s and d(u) quarks. The values ηD = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f_{D_s } $$
\end{document}/fD ∼ 1.23(15), recently observed in the CLEO experiment, and ηB = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f_{B_s } $$
\end{document}/fB ∼ 1.20, obtained in unquenched lattice QCD, can be reached only if, in the relativistic Hamiltonian the running mass, ms at low scale is ms(∼0.5 GeV) = 170–200 MeV. Our results follow from the analytical expression for the pseudoscalar decay constant fP based on the path-integral representation of the meson Green’s function.