Coherent-state quantization of constrained fermion systems

被引:0
|
作者
Georg Junker
John R. Klauder
机构
[1] Institut für Theoretische Physik,
[2] Universität Erlangen-Nürnberg,undefined
[3] Staudtstr. 7,undefined
[4] D-91058 Erlangen,undefined
[5] Germany (e-mail: junker@theorie1.physik.uni-erlangen.de) ,undefined
[6] Departments of Physics and Mathematics,undefined
[7] University of Florida,undefined
[8] Gainesville,undefined
[9] FL-32611,undefined
[10] USA (e-mail: klauder@phys.ufl.edu) ,undefined
关键词
Lagrange Multiplier; Fermion System; Bosonic Case; Fermionic Degree;
D O I
暂无
中图分类号
学科分类号
摘要
The quantization of systems with first- and second-class constraints within the coherent-state path-integral approach is extended to quantum systems with fermionic degrees of freedom. As in the bosonic case the importance of path-integral measures for Lagrange multipliers, which in this case are in general expected to be elements of a Grassmann algebra, is emphasized. Several examples with first- and second-class constraints are discussed.
引用
收藏
页码:173 / 183
页数:10
相关论文
共 50 条
  • [41] Teleportation of coherent-state superpositions within a network
    An, Nguyen Ba
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (02): : 223211 - 223216
  • [42] Coherent-state path-integral simulation of many-particle systems
    Beccaria, M
    Alles, B
    Farchioni, F
    PHYSICAL REVIEW E, 1997, 55 (04): : 3870 - 3877
  • [43] Testing the coherent-state description of radiation fields
    Manikandan, Sreenath K.
    Wilczek, Frank
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [44] Entanglement dynamics via coherent-state propagators
    Ribeiro, A. D.
    Angelo, R. M.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [45] DIAGONAL COHERENT-STATE REPRESENTATION OF QUANTUM OPERATORS
    MEHTA, CL
    PHYSICAL REVIEW LETTERS, 1967, 18 (18) : 752 - +
  • [46] INVERSION OF OPERATORS REPRESENTED IN A COHERENT-STATE BASIS
    RUSCHIN, S
    PHYSICAL REVIEW A, 1984, 29 (04): : 2218 - 2219
  • [47] Semiclassical coherent-state path integrals for scattering
    Grossmann, F
    PHYSICAL REVIEW A, 1998, 57 (05): : 3256 - 3261
  • [48] Coherent-state analysis of the quantum bouncing ball
    Mather, WH
    Fox, RF
    PHYSICAL REVIEW A, 2006, 73 (03)
  • [49] ALTERNATIVE METHOD OF EVALUATING THE COHERENT-STATE PROPAGATOR
    FESSEHA, K
    PHYSICAL REVIEW A, 1992, 46 (09): : 5379 - 5384
  • [50] Quasiclassical path integral in coherent-state manifolds
    Kochetov, EA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (19): : 4473 - 4492