Extending Structures for Lie Conformal Algebras

被引:0
|
作者
Yanyong Hong
Yucai Su
机构
[1] Zhejiang Agriculture and Forestry University,College of Science
[2] Tongji University,Department of Mathematics
来源
关键词
Lie conformal algebra; Extending structures problem; Crossed product; Bicrossed product; Unified product; 17A30; 17D25; 17A60; 18G60;
D O I
暂无
中图分类号
学科分类号
摘要
The ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem for Lie conformal algebras is studied. In this paper, we introduce the definition of unified product of a given Lie conformal algebra R and a given ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-module Q. This product includes some other interesting products of Lie conformal algebras such as twisted product, crossed product, and bicrossed product. Using this product, a cohomological type object is constructed to provide a theoretical answer to the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extending structures problem. Moreover, using this general theory, we investigate crossed product and bicrossed product in detail, which give the answers for the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split extension problem and the ℂ[∂]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}[\partial ]$\end{document}-split factorization problem respectively.
引用
收藏
页码:209 / 230
页数:21
相关论文
共 50 条
  • [1] Extending Structures for Lie Conformal Algebras
    Hong, Yanyong
    Su, Yucai
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (01) : 209 - 230
  • [2] Extending structures for Lie algebras
    A. L. Agore
    G. Militaru
    Monatshefte für Mathematik, 2014, 174 : 169 - 193
  • [3] Extending structures for Lie algebras
    Agore, A. L.
    Militaru, G.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 169 - 193
  • [4] Extending structures of lie conformal superalgebras
    Zhao, Jun
    Chen, Liangyun
    Yuan, Lamei
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1541 - 1555
  • [5] Extending structures for associative conformal algebras
    Hong, Yanyong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (01): : 196 - 212
  • [6] Extending Structures for Lie 2-Algebras
    Tan, Yan
    Wu, Zhixiang
    MATHEMATICS, 2019, 7 (06)
  • [7] Extending structures for 3-Lie algebras
    Zhang, Tao
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1469 - 1497
  • [8] Extending Structures of Rota-Baxter Lie Algebras
    Peng, Xiao-song
    Zhang, Yi
    JOURNAL OF LIE THEORY, 2024, 34 (04) : 753 - 772
  • [9] Lie conformal algebras related to Galilean conformal algebras
    Han, Xiu
    Wang, Dengyin
    Xia, Chunguang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [10] On embedding of Lie conformal algebras into associative conformal algebras
    Roitman, M
    JOURNAL OF LIE THEORY, 2005, 15 (02) : 575 - 588