Handwritten Digit Recognition by a Mixture of Local Principal Component Analysis

被引:0
|
作者
Bailing Zhang
Minyue Fu
Hong Yan
机构
[1] The University of Newcastle,Department of Electrical and Computer Engineering
[2] University of Sydney,Department of Electrical Engineering
来源
关键词
neural networks; mixture of principal component analysis; handwritten digit recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Mixture of local principal component analysis (PCA) has attracted attention due to a number of benefits over global PCA. The performance of a mixture model usually depends on the data partition and local linear fitting. In this paper, we propose a mixture model which has the properties of optimal data partition and robust local fitting. Data partition is realized by a soft competition algorithm called neural 'gas' and robust local linear fitting is approached by a nonlinear extension of PCA learning algorithm. Based on this mixture model, we describe a modular classification scheme for handwritten digit recognition, in which each module or network models the manifold of one of ten digit classes. Experiments demonstrate a very high recognition rate.
引用
收藏
页码:241 / 252
页数:11
相关论文
共 50 条
  • [21] Rosenblatt Perceptrons for handwritten digit recognition
    Ernst, K
    Tatyana, B
    Lora, K
    Vladimir, L
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1516 - 1520
  • [22] Handwritten English Character and Digit Recognition
    Al-Mahmud
    Tanvin, Asnuva
    Rahman, Sazia
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [23] Ranked Dropout for Handwritten Digit Recognition
    Tang, Yue
    Liang, Zhuonan
    Shi, Huaze
    Fu, Peng
    Sun, Quansen
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [24] Bootstrapping for efficient handwritten digit recognition
    Saradhi, VV
    Murty, MN
    PATTERN RECOGNITION, 2001, 34 (05) : 1047 - 1056
  • [25] Handwritten digit recognition by combined classifiers
    van Breukelen, M
    Duin, RPW
    Tax, DMJ
    den Hartog, JE
    KYBERNETIKA, 1998, 34 (04) : 381 - 386
  • [26] APPLICATION OF SICoNNETS TO HANDWRITTEN DIGIT RECOGNITION
    Tivive, Fok Hing Chi
    Bouzerdoum, Abdesselam
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2006, 6 (01) : 45 - 59
  • [27] Handwritten Digit Recognition System on an FPGA
    Si, Jiong
    Harris, Sarah L.
    2018 IEEE 8TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2018, : 402 - 407
  • [28] Selective attention for handwritten digit recognition
    Alpaydin, E
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 8: PROCEEDINGS OF THE 1995 CONFERENCE, 1996, 8 : 771 - 777
  • [29] An embedded system for handwritten digit recognition
    Saldanha, Luca B.
    Bobda, Christophe
    JOURNAL OF SYSTEMS ARCHITECTURE, 2015, 61 (10) : 693 - 699
  • [30] Classification Functions for Handwritten Digit Recognition
    Sasao, Tsutomu
    Horikawa, Yuto
    Iguchi, Yukihiro
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (08) : 1076 - 1082