Calibrated and recalibrated expected improvements for Bayesian optimization

被引:0
|
作者
Zhendong Guo
Yew-Soon Ong
Haitao Liu
机构
[1] Xi’an Jiaotong University,School of Energy and Power Engineering
[2] Nanyang Technological University,Data Science and AI Research Center
[3] Dalian University of Technology,School of Energy and Power Engineering
关键词
Expected improvement; Bayesian optimization; Gaussian process;
D O I
暂无
中图分类号
学科分类号
摘要
Expected improvement (EI), a function of prediction uncertainty σ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\mathbf{x})$$\end{document}and improvement quantity (ξ-y^(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {(\xi - {{\hat{y}}}({\mathbf{x}}))}$$\end{document}, has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies attribute such sub-optimal convergence problem to the “over-exploitation” of EI. Differently, we argue that, in addition to the “over-exploitation”, EI can also get trapped in querying samples with maximum σ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma ({\mathbf{x}})$$\end{document} but poor objective function value y(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y(\mathbf{x})$$\end{document}. We call such issue as “over-exploration”, which can be a more challenging problem that leads to the sub-optimal convergence rate of BO. To address the issues of “over-exploration” and “over-exploitation” simultaneously, we propose to calibrate the incumbent ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} adaptively instead of fixing it as the present best solution in the EI formulation. Furthermore, we propose two calibrated versions of EI, namely calibrated EI (CEI) and recalibrated EI (REI), which combine the calibrated incumbent ξCalibrated\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^\text{Calibrated}$$\end{document} with distance constraint to enhance the local exploitation and global exploration of promising areas, respectively. After that, we integrate EI with CEI & REI to devise a novel BO algorithm named as CR-EI. Through tests on seven benchmark functions and an engineering problem of airfoil optimization, the effectiveness of CR-EI has been well demonstrated.
引用
收藏
页码:3549 / 3567
页数:18
相关论文
共 50 条
  • [41] THERAPEUTIC INTERVENTION IN ANIMAL PRODUCTION - NEXT IMPROVEMENTS EXPECTED
    ESPINASSE, J
    DEWAELE, A
    VINDEVOGEL, H
    BULLETIN DE L ACADEMIE VETERINAIRE DE FRANCE, 1987, 60 (04): : 483 - 489
  • [42] Current problems and expected improvements in personal neutron dosimetry
    McDonald, JC
    RADIATION PROTECTION DOSIMETRY, 2004, 110 (1-4) : 743 - 745
  • [43] Approximate Bayesian Inference Based on Expected Evaluation
    Hammer, Hugo L.
    Riegler, Michael A.
    Tjelmeland, Hakon
    BAYESIAN ANALYSIS, 2024, 19 (03): : 677 - 698
  • [44] SYNTHESIZED EXPECTED BAYESIAN METHOD OF PARAMETRIC ESTIMATE
    Ming HAN Yuanyao DINGDepartment of Mathematics Zhejiang Ocean University
    Journal of Systems Science and Systems Engineering, 2004, (01) : 98 - 111
  • [45] Synthesized expected Bayesian method of parametric estimate
    Ming Han
    Yuanyao Ding
    Journal of Systems Science and Systems Engineering, 2004, 13 (1) : 98 - 111
  • [46] A Constrained Optimization Approach for Calibrated Recommendations
    Seymen, Sinan
    Abdollahpouri, Himan
    Malthouse, Edward C.
    15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 607 - 612
  • [47] Revealed Bayesian expected utility with limited data
    Rehbeck, John
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2023, 207 : 81 - 95
  • [48] A Multi-point Mechanism of Expected Hypervolume Improvement for Parallel Multi-objective Bayesian Global Optimization
    Yang, Kaifeng
    Palar, Pramudita Satria
    Emmerich, Michael
    Shimoyama, Koji
    Back, Thomas
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 656 - 663
  • [49] CONSTRAINT HANDLING IN BAYESIAN OPTIMIZATION - A COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE, AUGMENTED LAGRANGIAN AND EXPECTED FEASIBLE IMPROVEMENT
    Jin, Yuan
    Yang, Zheyi
    Dai, Shiran
    Lebret, Yann
    Jung, Olivier
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 2D, 2021,
  • [50] A Bayesian approach to calibration intervals and properly calibrated tolerance intervals
    Hamada, M
    Pohl, A
    Spiegelman, C
    Wendelberger, J
    JOURNAL OF QUALITY TECHNOLOGY, 2003, 35 (02) : 194 - 205