On the Spectrum and Lyapunov Exponent of Limit Periodic Schrödinger Operators

被引:0
|
作者
Artur Avila
机构
[1] Université Pierre et Marie Curie–Boîte Courrier 188,CNRS UMR 7599, Laboratoire de Probabilités et Modèles Aléatoires
[2] IMPA,undefined
来源
关键词
Hull; Lebesgue Measure; Lyapunov Exponent; Spectral Radius; Cantor Group;
D O I
暂无
中图分类号
学科分类号
摘要
We exhibit a dense set of limit periodic potentials for which the corresponding one-dimensional Schrödinger operator has a positive Lyapunov exponent for all energies and a spectrum of zero Lebesgue measure. No example with those properties was previously known, even in the larger class of ergodic potentials. We also conclude that the generic limit periodic potential has a spectrum of zero Lebesgue measure.
引用
收藏
页码:907 / 918
页数:11
相关论文
共 50 条
  • [21] Explicit construction of quasi-periodic analytic Schrödinger operators with cantor spectrum
    He, Jiawei
    Hou, Xuanji
    Shan, Yuan
    You, Jiangong
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 179 - 225
  • [22] On the Singular Spectrum for Adiabatic Quasi-Periodic Schrödinger Operators on the Real Line
    Alexander Fedotov
    Frédéric Klopp
    Annales Henri Poincaré, 2004, 5 : 929 - 978
  • [23] Spectrum and pseudospectrum of non-self-adjoint Schrödinger operators with periodic coefficients
    S. V. Gal’tsev
    A. I. Shafarevich
    Mathematical Notes, 2006, 80 : 345 - 354
  • [24] Adiabatic almost-periodic Schrödinger operators
    Fedotov A.A.
    Journal of Mathematical Sciences, 2011, 173 (3) : 299 - 319
  • [25] Asymptotic isospectrality of Schrödinger operators on periodic graphs
    Saburova, Natalia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
  • [26] On the bandwidths of periodic approximations to discrete schrödinger operators
    Haeming, Lian
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (02): : 489 - 517
  • [27] Hölder Continuity of Lyapunov Exponent for a Family of Smooth Schrödinger Cocycles
    Jinhao Liang
    Yiqian Wang
    Jiangong You
    Annales Henri Poincaré, 2024, 25 : 1399 - 1444
  • [28] Generic Continuous Spectrum for Ergodic Schrödinger Operators
    Michael Boshernitzan
    David Damanik
    Communications in Mathematical Physics, 2008, 283
  • [29] A Family of Schrödinger Operators Whose Spectrum is an Interval
    Helge Krüger
    Communications in Mathematical Physics, 2009, 290 : 935 - 939
  • [30] The Negative Spectrum of Schr?dinger Operators with Fractal Potentials
    Bo Wu
    Hongyong Wang
    Weiyi Su
    Analysis in Theory and Applications, 2015, 31 (04) : 381 - 393