Predicting Second Language Proficiency Level Using Linguistic Cognitive Task and Machine Learning Techniques

被引:0
|
作者
YeongWook Yang
WonHee Yu
HeuiSeok Lim
机构
[1] Korea University,Department of Computer Science Education
来源
关键词
Language proficiency; Cognitive ability; Second language;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel method for predicting second language proficiency based on linguistic cognitive ability measured in linguistic cognitive response test. Our method is based on an assumption that there is a correlation between language aptitude test scores and linguistic cognitive ability. Our proposed method for predicting L2 language proficiency uses as input learner’s linguistic cognition aptitude data. In our experiment, the method produced promising results with the predictive power as high as 70 %. Linguistic cognitive ability is measured through linguistic cognition tasks, which are: reading lexical decision tasks (LDT), listening LDT, translation recognition tasks, and semantic recognition tasks. Each type of the tasks is related to a different linguistic function in the brain. After measuring the learner’s linguistic cognitive aptitude, the result is fed as input for a machine learning model, which makes predictions for the corresponding language proficiency level. In training the linguistic proficiency classifier, we used multi-layer perceptron, Naive Bayes, logistic regression, and random forest model. For input data set in our experiment, we had 42 participants take our cognitive aptitude tests and used the result. Our classifier showed an accuracy >70 % in predicting proficiency level. Among the models, random forest model produced the best predictive power.
引用
收藏
页码:271 / 285
页数:14
相关论文
共 50 条
  • [11] Predicting IRI Using Machine Learning Techniques
    Sharma, Ankit
    Sachdeva, S. N.
    Aggarwal, Praveen
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (01) : 128 - 137
  • [12] Predicting IRI Using Machine Learning Techniques
    Ankit Sharma
    S. N. Sachdeva
    Praveen Aggarwal
    International Journal of Pavement Research and Technology, 2023, 16 : 128 - 137
  • [13] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [14] Predicting Second Language Writing Proficiency in Learner Texts Using Computational Tools
    Jung, YeonJoo
    Crossley, Scott
    McNamara, Danielle
    JOURNAL OF ASIA TEFL, 2019, 16 (01): : 37 - 52
  • [15] The relationship between cognitive control and second language proficiency
    Luque, Alicia
    Morgan-Short, Kara
    JOURNAL OF NEUROLINGUISTICS, 2021, 57
  • [16] Predicting Amyloid-β Levels in Amnestic Mild Cognitive Impairment Using Machine Learning Techniques
    Ezzati, Ali
    Harvey, Danielle J.
    Habeck, Christian
    Golzar, Ashkan
    Qureshi, Irfan A.
    Zammit, Andrea R.
    Hyun, Jinshil
    Truelove-Hill, Monica
    Hall, Charles B.
    Davatzikos, Christos
    Lipton, Richard B.
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 73 (03) : 1211 - 1219
  • [17] Predicting performance of swimmers using machine learning techniques
    Guerra-Salcedo, Cesar M.
    Janek, Libor
    Perez-Ortega, Joaquin
    Pazos-Rangel, Rodolfo A.
    WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 3, 2005, : 146 - 148
  • [18] Predicting Driver Destination using Machine Learning Techniques
    Manasseh, Christian
    Sengupta, Raja
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 142 - 147
  • [19] Predicting bank insolvencies using machine learning techniques
    Petropoulos, Anastasios
    Siakoulis, Vasilis
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikolaos E.
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1092 - 1113
  • [20] Predicting Blood Donors Using Machine Learning Techniques
    Kauten, Christian
    Gupta, Ashish
    Qin, Xiao
    Richey, Glenn
    INFORMATION SYSTEMS FRONTIERS, 2022, 24 (05) : 1547 - 1562