Adapted Decimation on Finite Frames for Arbitrary Orders of Sigma-Delta Quantization

被引:0
|
作者
Kung-Ching Lin
机构
[1] University of Maryland,Department of Mathematics, Norbert Wiener Center
关键词
Decimation; Sigma-Delta quantization; Unitarily generated frames; 42C15; 94A08; 94A34;
D O I
暂无
中图分类号
学科分类号
摘要
In Analog-to-digital (A/D) conversion, signal decimation has been proven to greatly improve the efficiency of data storage while maintaining high accuracy. When one couples signal decimation with the ΣΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \Delta $$\end{document} quantization scheme, the reconstruction error decays exponentially with respect to the bit-rate. We build on our previous result, which extended signal decimation to finite frames, albeit only up to the second order. In this study, we introduce a new scheme called adapted decimation, which yields polynomial reconstruction error decay rate of arbitrary order with respect to the oversampling ratio, and exponential with respect to the bit-rate.
引用
收藏
相关论文
共 50 条
  • [31] Comb Structures for Sigma-Delta ADCs with High Even Decimation Factors
    Molina Salgado, Gerardo
    Jovanovic Dolecek, Gordana
    de la Rosa, Jose M.
    [J]. 2014 IEEE 57TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2014, : 583 - 586
  • [32] Nonlinear Quantization Technique for Multibit Sigma-Delta Modulators
    Costa, Laryssa L. O.
    Medeiros, Jose E. G.
    de Andrade, Jose A. A.
    Haddad, Sandro A. P.
    [J]. 2020 18TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS'20), 2020, : 42 - 45
  • [33] Sobolev Duals in Frame Theory and Sigma-Delta Quantization
    Blum, James
    Lammers, Mark
    Powell, Alexander M.
    Yilmaz, Oezguer
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (03) : 365 - 381
  • [34] Sobolev Duals in Frame Theory and Sigma-Delta Quantization
    James Blum
    Mark Lammers
    Alexander M. Powell
    Özgür Yılmaz
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 365 - 381
  • [35] THE STRUCTURE OF QUANTIZATION NOISE FROM SIGMA-DELTA MODULATION
    CANDY, JC
    BENJAMIN, OJ
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1981, 29 (09) : 1316 - 1323
  • [36] Frame paths and error bounds for sigma-delta quantization
    Bodmann, Bernhard G.
    Paulsen, Vern I.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 22 (02) : 176 - 197
  • [37] Sigma-delta quantization errors and the traveling salesman problem
    Wang, Yang
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (02) : 101 - 118
  • [38] Design of sigma-delta modulators with arbitrary transfer functions
    Wang, YT
    Muhammad, T
    Roy, K
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 53 - 56
  • [39] Design of sigma-delta modulators with arbitrary transfer functions
    Wang, Yongtao
    Muhammad, Khurram
    Roy, Kaushik
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (02) : 677 - 683
  • [40] Compact decimation filter for constant-input oversampling sigma-delta modulators
    Hoo, Chian C.
    Lin, Chang-Loug
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 238 - 242