Adapted Decimation on Finite Frames for Arbitrary Orders of Sigma-Delta Quantization

被引:0
|
作者
Kung-Ching Lin
机构
[1] University of Maryland,Department of Mathematics, Norbert Wiener Center
关键词
Decimation; Sigma-Delta quantization; Unitarily generated frames; 42C15; 94A08; 94A34;
D O I
暂无
中图分类号
学科分类号
摘要
In Analog-to-digital (A/D) conversion, signal decimation has been proven to greatly improve the efficiency of data storage while maintaining high accuracy. When one couples signal decimation with the ΣΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \Delta $$\end{document} quantization scheme, the reconstruction error decays exponentially with respect to the bit-rate. We build on our previous result, which extended signal decimation to finite frames, albeit only up to the second order. In this study, we introduce a new scheme called adapted decimation, which yields polynomial reconstruction error decay rate of arbitrary order with respect to the oversampling ratio, and exponential with respect to the bit-rate.
引用
收藏
相关论文
共 50 条