D-optimal designs for Poisson regression with synergetic interaction effect

被引:0
|
作者
Fritjof Freise
Ulrike Graßhoff
Frank Röttger
Rainer Schwabe
机构
[1] University of Veterinary Medicine Hannover,Department of Biometry, Epidemiology and Information Processing
[2] Humboldt-University Berlin,School of Business and Economics
[3] University of Geneva,Research Center for Statistics
[4] Otto-von-Guericke-University Magdeburg,Institute for Mathematical Stochastics
来源
TEST | 2021年 / 30卷
关键词
-optimal design; Poisson regression; Interaction; Synergy effect; Minimally supported design; Primary 62K05; Secondary 62J12;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize D-optimal designs in the two-dimensional Poisson regression model with synergetic interaction and provide an explicit proof. The proof is based on the idea of reparameterization of the design region in terms of contours of constant intensity. This approach leads to a substantial reduction in complexity as properties of the sensitivity can be treated along and across the contours separately. Furthermore, some extensions of this result to higher dimensions are presented.
引用
收藏
页码:1004 / 1025
页数:21
相关论文
共 50 条
  • [41] A limit theorem of D-optimal designs for weighted polynomial regression
    Chang, Fu-Chuen
    Tsai, Jhong-Shin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 154 : 26 - 38
  • [42] Almost D-optimal designs
    Cohn, JHE
    [J]. UTILITAS MATHEMATICA, 2000, 57 : 121 - 128
  • [43] Notes on D-optimal designs
    Neubauer, MG
    Watkins, W
    Zeitlin, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 280 (2-3) : 109 - 127
  • [44] A FAMILY OF D-OPTIMAL DESIGNS
    WHITEMAN, AL
    [J]. ARS COMBINATORIA, 1990, 30 : 23 - 26
  • [45] Complex D-optimal designs
    Cohn, JHE
    [J]. DISCRETE MATHEMATICS, 1996, 156 (1-3) : 237 - 241
  • [46] D-OPTIMAL DESIGNS IN QSAR
    BARONI, M
    CLEMENTI, S
    CRUCIANI, G
    KETTANEHWOLD, N
    WOLD, S
    [J]. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1993, 12 (03): : 225 - 231
  • [47] Complex D-optimal designs
    Department of Mathematics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
    [J]. Discrete Math, 1-3 (237-241):
  • [48] ON THE NUMBER OF D-OPTIMAL DESIGNS
    COHN, JHE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (02) : 214 - 225
  • [49] D-Optimal Designs for the Mitscherlich Non-Linear Regression Function
    Heidari, Maliheh
    Abu Manju, Md
    IJzerman-Boon, Pieta C.
    van den Heuvel, Edwin R.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2022, 31 (01) : 1 - 17
  • [50] Geometric characterization of D-optimal designs for random coefficient regression models
    Liu, Xin
    Yue, Rong-Xian
    Chatterjee, Kashinath
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 159