A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy

被引:0
|
作者
Chao Yu
Guozheng Kang
Qianhua Kan
机构
[1] Southwest Jiaotong University,State Key Laboratory of Traction Power
[2] Southwest Jiaotong University,Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering
来源
Acta Mechanica Sinica | 2017年 / 33卷
关键词
NiTi SMAs; Constitutive model; Cyclic degeneration of shape memory effect; Transformation-induced plasticity; Reorientation-induced plasticity;
D O I
暂无
中图分类号
学科分类号
摘要
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{t}}$$\end{document} and detwinned martensite Md\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{d}}$$\end{document}, as well as the phase transitions occurring between each pair of phases (A→Mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\rightarrow M ^{\mathrm{t}}$$\end{document}, Mt→A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{t}}\rightarrow A$$\end{document}, A→Md\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\rightarrow M ^{\mathrm{d}}$$\end{document}, Md→A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{d}}\rightarrow A$$\end{document}, and Mt→Md)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{t}}\rightarrow M ^{\mathrm{d}})$$\end{document} are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, Mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{t}}$$\end{document}, and Md)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\mathrm{d}})$$\end{document} and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.
引用
收藏
页码:619 / 634
页数:15
相关论文
共 50 条
  • [21] A general thermo-mechanical shape memory alloy model: Formulation and applications
    Choudhry, S
    Yoon, JW
    [J]. MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS 1 AND 2, 2004, 712 : 1589 - 1594
  • [22] Thermo-mechanical characterisation of NiTi-based shape memory alloy wires for civil engineering applications
    Suhail, Raj
    Amato, Giuseppina
    McCrum, Daniel
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (20) : 2420 - 2436
  • [23] A thermo-mechanical model for shape memory alloy-based crank heat engines
    Niccoli, Fabrizio
    Maletta, Carmine
    Sgambitterra, Emanuele
    Furgiuele, Franco
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (06) : 652 - 662
  • [24] Constitutive model for the dynamic response of a NiTi shape memory alloy
    Shi, Xiaohong
    Zeng, Xiangguo
    Chen, Huayan
    [J]. MATERIALS RESEARCH EXPRESS, 2016, 3 (07):
  • [25] A thermo-viscoelastic constitutive model addressing the cyclic shape memory effect for thermo-induced shape memory polymers
    Li, Jian
    Liang, Zhihong
    Liu, Junjie
    Yu, Chao
    Zhang, Xuelian
    Kan, Qianhua
    [J]. SMART MATERIALS AND STRUCTURES, 2023, 32 (03)
  • [26] Thermo-mechanical coupling analysis in the dieless drawing process of NiTi shape memory alloy wires
    School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
    [J]. Beijing Keji Daxue Xuebao, 2008, 11 (1249-1254):
  • [27] A thermo-mechanical constitutive model for triple-shape and two-way shape memory polymers
    Gu, Jianping
    Wang, Changchun
    Zeng, Hao
    Duan, Hao
    Wan, Mengqi
    Sun, Huiyu
    [J]. SMART MATERIALS AND STRUCTURES, 2024, 33 (06)
  • [28] Coupled thermo-mechanical model for shape memory alloys
    Volkov, O
    Brailovski, V
    Trochu, F
    [J]. SHAPE MEMORY ALLOYS: FUNDAMENTALS, MODELING AND INDUSTRIAL APPLICATIONS, 1999, : 163 - 176
  • [29] A macroscopic constitutive model of shape memory alloy considering plasticity
    Zhou, Bo
    [J]. MECHANICS OF MATERIALS, 2012, 48 : 71 - 81
  • [30] Thermo-mechanical characterization of shape memory alloy torque tubes
    Keefe, AC
    Carman, GP
    [J]. SMART STRUCTURES AND MATERIALS 1999: SMART MATERIALS TECHNOLOGIES, 1999, 3675 : 295 - 302