Existence Theory for the Boussinesq Equation in Modulation Spaces

被引:0
|
作者
Carlos Banquet
Élder J. Villamizar-Roa
机构
[1] Universidad de Córdoba,Departamento de Matemáticas y Estadística
[2] Universidad Industrial de Santander,undefined
[3] Escuela de Matemáticas,undefined
关键词
Boussinesq equation; Modulation spaces; Local and global solutions; Scattering; Asymptotic stability; 35Q53; 35A01; 47J35; 35B40; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the Cauchy problem for the generalized Boussinesq equation with initial data in modulation spaces Mp′,qs(Rn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{s}_{p^\prime ,q}(\mathbb {R}^n),$$\end{document}n≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1.$$\end{document} After a decomposition of the Boussinesq equation in a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}-nonlinear system, we obtain the existence of global and local solutions in several classes of functions with values in Mp,qs×D-1JMp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M^s_{p,q}\times D^{-1}JM^s_{p,q}$$\end{document}-spaces for suitable p, q and s,  including the special case p=2,q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,q=1$$\end{document} and s=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0.$$\end{document} Finally, we prove some results of scattering and asymptotic stability in the framework of modulation spaces.
引用
收藏
页码:1057 / 1082
页数:25
相关论文
共 50 条
  • [41] Existence theory for Rosseland equation and its homogenized equation
    Qiao-fu Zhang
    Jun-zhi Cui
    Applied Mathematics and Mechanics, 2012, 33 : 1595 - 1612
  • [42] Existence theory for Rosseland equation and its homogenized equation
    张乔夫
    崔俊芝
    AppliedMathematicsandMechanics(EnglishEdition), 2012, 33 (12) : 1595 - 1612
  • [43] Existence theory for Rosseland equation and its homogenized equation
    Zhang, Qiao-fu
    Cui, Jun-zhi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2012, 33 (12) : 1595 - 1612
  • [44] Existence and Uniqueness of Generalized and Mixed Finite Element Solutions for Steady Boussinesq Equation
    Luo, Zhendong
    Liu, Xiangdong
    Zeng, Yihui
    Li, Yuejie
    MATHEMATICS, 2023, 11 (03)
  • [45] Global existence and exponential growth of solution for the logarithmic Boussinesq-type equation
    Hu, Qingying
    Zhang, Hongwei
    Liu, Gongwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 990 - 1001
  • [46] Global existence and blow-up of the solutions for the multidimensional generalized Boussinesq equation
    Wang, Ying
    Mu, Chunlai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (12) : 1403 - 1417
  • [47] Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation
    Liu Yacheng
    Xu Runzhang
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (06) : 721 - 731
  • [48] GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION
    BONA, JL
    SACHS, RL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) : 15 - 29
  • [49] Existence of global attractors for two-dimensional Newton-Boussinesq equation
    Song, Xue-li
    Wu, Jian-hua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 157 : 1 - 19
  • [50] Existence and bifurcation of traveling wave solutions to a generalized Boussinesq equation with nonlinear dispersion
    Zhu, Neng
    Qu, Wenjing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4840 - 4852