Existence Theory for the Boussinesq Equation in Modulation Spaces

被引:0
|
作者
Carlos Banquet
Élder J. Villamizar-Roa
机构
[1] Universidad de Córdoba,Departamento de Matemáticas y Estadística
[2] Universidad Industrial de Santander,undefined
[3] Escuela de Matemáticas,undefined
关键词
Boussinesq equation; Modulation spaces; Local and global solutions; Scattering; Asymptotic stability; 35Q53; 35A01; 47J35; 35B40; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the Cauchy problem for the generalized Boussinesq equation with initial data in modulation spaces Mp′,qs(Rn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{s}_{p^\prime ,q}(\mathbb {R}^n),$$\end{document}n≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1.$$\end{document} After a decomposition of the Boussinesq equation in a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}-nonlinear system, we obtain the existence of global and local solutions in several classes of functions with values in Mp,qs×D-1JMp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M^s_{p,q}\times D^{-1}JM^s_{p,q}$$\end{document}-spaces for suitable p, q and s,  including the special case p=2,q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,q=1$$\end{document} and s=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0.$$\end{document} Finally, we prove some results of scattering and asymptotic stability in the framework of modulation spaces.
引用
收藏
页码:1057 / 1082
页数:25
相关论文
共 50 条