Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection

被引:0
|
作者
Uğur Tamer
Yusuf Gündoğdu
İsmail Hakkı Boyacı
Kadir Pekmez
机构
[1] Gazi University,Department of Analytical Chemistry, Faculty of Pharmacy
[2] Hacettepe University,Department of Food Engineering
[3] Hacettepe University,Department of Chemistry
来源
关键词
Magnetic nanoparticles; Gold–iron oxide nanoparticle; Immunomagnetic separation; Boronic acid; Composite nanomaterials; Nanomedicine;
D O I
暂无
中图分类号
学科分类号
摘要
The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV–Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4–Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.
引用
收藏
页码:1187 / 1196
页数:9
相关论文
共 50 条
  • [21] Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods
    Khurshid, Hafsa
    Chandra, Sayan
    Li, Wanfeng
    Phan, M. H.
    Hadjipanayis, G. C.
    Mukherjee, P.
    Srikanth, H.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [22] Synthesis of Fe3O4@Au core–shell nanoparticles
    A. Yu. Solovieva
    Yu. V. Ioni
    A. O. Baskakov
    S. S. Starchikov
    A. S. Avilov
    I. S. Lyubutin
    S. P. Gubin
    Russian Journal of Inorganic Chemistry, 2017, 62 : 711 - 714
  • [23] Phase transformation of FeO/Fe3O4 core/shell nanocubes and facile synthesis of Fe3O4 nanocubes
    Hai, Hoang Tri
    Kura, Hiroaku
    Takahashi, Migaku
    Ogawa, Tomoyuki
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [24] Monodisperse Fe3O4/Fe core/shell nanoparticles with enhanced magnetic property
    Sun, Li
    Liu, Futian
    Jiang, Qinghui
    Chen, Xiuxiu
    Yang, Ping
    EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 : 410 - 415
  • [25] Optical and Dielectric Properties of Plasmonic Core–Shell Nanoparticles: Fe2O3/Au and Fe3O4/Au
    A. Akouibaa
    R. Masrour
    A. Jabar
    M. Benhamou
    A. Derouiche
    Journal of Cluster Science, 2022, 33 : 2139 - 2146
  • [26] In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites
    Zhang, Qian
    Zhang, Wei
    Peng, Kun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 484 : 418 - 423
  • [27] Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances
    Yang, Bai
    Li, Xiaopan
    Yang, Xueying
    Yu, Ronghai
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 428 : 6 - 11
  • [28] Synthesis and characterization of magnetic Fe3O4/Au magnetic composite nanoparticles
    Peng Jucun
    Wu Boying
    Chen Jie
    RARE METAL MATERIALS AND ENGINEERING, 2008, 37 (03) : 504 - 508
  • [29] Synthesis and Magnetic Properties of the Core-Shell Fe3O4/CoFe2O4 Nanoparticles
    Balaev, D. A.
    Semenov, S. V.
    Dubrovskii, A. A.
    Krasikov, A. A.
    Popkov, S. I.
    Yakushkin, S. S.
    Kirillov, V. L.
    Mart'yanov, O. N.
    PHYSICS OF THE SOLID STATE, 2020, 62 (02) : 285 - 290
  • [30] Magnetic core/shell Fe3O4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy
    Jin, Rui
    Song, Daqian
    Xiong, Huixia
    Ai, Lisha
    Ma, Pinyi
    Sun, Ying
    LUMINESCENCE, 2016, 31 (02) : 499 - 506