CMOS-based cryogenic control of silicon quantum circuits

被引:0
|
作者
Xiao Xue
Bishnu Patra
Jeroen P. G. van Dijk
Nodar Samkharadze
Sushil Subramanian
Andrea Corna
Brian Paquelet Wuetz
Charles Jeon
Farhana Sheikh
Esdras Juarez-Hernandez
Brando Perez Esparza
Huzaifa Rampurawala
Brent Carlton
Surej Ravikumar
Carlos Nieva
Sungwon Kim
Hyung-Jin Lee
Amir Sammak
Giordano Scappucci
Menno Veldhorst
Fabio Sebastiano
Masoud Babaie
Stefano Pellerano
Edoardo Charbon
Lieven M. K. Vandersypen
机构
[1] QuTech,Kavli Institute of Nanoscience
[2] Delft University of Technology,Department of Quantum and Computer Engineering
[3] Delft University of Technology,undefined
[4] Delft University of Technology,undefined
[5] Netherlands Organization for Applied Scientific Research (TNO),undefined
[6] Intel Corporation,undefined
[7] Intel Guadalajara,undefined
[8] École Polytechnique Fédérale de Lausanne (EPFL),undefined
来源
Nature | 2021年 / 593卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications1. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the quantum chip in a dilution refrigerator and the room-temperature electronics. Advanced lithography supports the fabrication of both control electronics and qubits in silicon using technology compatible with complementary metal oxide semiconductors (CMOS)2. When the electronics are designed to operate at cryogenic temperatures, they can ultimately be integrated with the qubits on the same die or package, overcoming the ‘wiring bottleneck’3–6. Here we report a cryogenic CMOS control chip operating at 3 kelvin, which outputs tailored microwave bursts to drive silicon quantum bits cooled to 20 millikelvin. We first benchmark the control chip and find an electrical performance consistent with qubit operations of 99.99 per cent fidelity, assuming ideal qubits. Next, we use it to coherently control actual qubits encoded in the spin of single electrons confined in silicon quantum dots7–9 and find that the cryogenic control chip achieves the same fidelity as commercial instruments at room temperature. Furthermore, we demonstrate the capabilities of the control chip by programming a number of benchmarking protocols, as well as the Deutsch–Josza algorithm10, on a two-qubit quantum processor. These results open up the way towards a fully integrated, scalable silicon-based quantum computer.
引用
收藏
页码:205 / 210
页数:5
相关论文
共 50 条
  • [21] Cryogenic Adiabatic Transistor Circuits for Quantum Computer Control
    DeBenedictis, Erik P.
    2021 IEEE 14TH WORKSHOP ON LOW TEMPERATURE ELECTRONICS (WOLTE), 2021,
  • [22] CMOS-BASED HIGH-DENSITY SILICON MICROPROBE ARRAY FOR ELECTRONIC DEPTH CONTROL IN NEURAL RECORDING
    Seidl, K.
    Herwik, S.
    Nurcahyo, Y.
    Torfs, T.
    Keller, M.
    Schuettler, M.
    Neves, H.
    Stieglitz, T.
    Paul, O.
    Ruther, P.
    IEEE 22ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2009), 2009, : 232 - 235
  • [23] CMOS-based biosensor arrays
    Thewes, R
    Paulus, C
    Schienle, M
    Hofmann, F
    Frey, A
    Brederlow, R
    Augustyniak, M
    Jenkner, M
    Eversmann, B
    Schindler-Bauer, P
    Atzesberger, M
    Holzapfl, B
    Beer, G
    Haneder, T
    Hanke, HC
    DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1222 - 1223
  • [24] A CMOS-based algorithmic ADC
    Arayawat, S.
    Chaikla, A.
    Petcmaneelumka, W.
    Riewruja, V.
    Julsereewong, P.
    Trisuwannawat, T.
    2005 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, PROCEEDINGS, 2005, : 661 - 664
  • [25] Design Automation for Cryogenic CMOS Circuits
    van Santen, Victor M.
    Walter, Marcel
    Klemme, Florian
    Parihar, Shivendra Singh
    Pahwa, Girish
    Chauhan, Yogesh S.
    Wille, Robert
    Amrouch, Hussam
    2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [26] CMOS-BASED NEURAL PROBE WITH ENHANCED ELECTRONIC DEPTH CONTROL
    Herbawi, A. Sayed
    Larramendy, F.
    Galchev, T.
    Holzhammer, T.
    Mildenberger, B.
    Paul, O.
    Ruther, P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1723 - 1726
  • [27] CMOS-based resonant sensors
    Brand, O
    2005 IEEE SENSORS, VOLS 1 AND 2, 2005, : 129 - 132
  • [28] CMOS-based image sensors
    Inoue, S
    IS&T'S NIP21: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, FINAL PROGRAM AND PROCEEDINGS, 2005, : 650 - 652
  • [29] CMOS-based chemical microsensors
    Hierlemann, A
    Baltes, H
    ANALYST, 2003, 128 (01) : 15 - 28
  • [30] Challenges in CMOS-based images
    Roy, Francois
    Tournier, A.
    Wehbe-Alause, H.
    Blanchet, F.
    Boulenc, P.
    Leverd, F.
    Favennec, L.
    Perrot, C.
    Pinzelli, L.
    Gatefait, M.
    Cherault, N.
    Jeanjean, D.
    Carrere, J. P.
    Augier, C.
    Ricq, S.
    Herault, D.
    Hulot, S.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 1, 2014, 11 (01): : 50 - 56