CMOS-based cryogenic control of silicon quantum circuits

被引:0
|
作者
Xiao Xue
Bishnu Patra
Jeroen P. G. van Dijk
Nodar Samkharadze
Sushil Subramanian
Andrea Corna
Brian Paquelet Wuetz
Charles Jeon
Farhana Sheikh
Esdras Juarez-Hernandez
Brando Perez Esparza
Huzaifa Rampurawala
Brent Carlton
Surej Ravikumar
Carlos Nieva
Sungwon Kim
Hyung-Jin Lee
Amir Sammak
Giordano Scappucci
Menno Veldhorst
Fabio Sebastiano
Masoud Babaie
Stefano Pellerano
Edoardo Charbon
Lieven M. K. Vandersypen
机构
[1] QuTech,Kavli Institute of Nanoscience
[2] Delft University of Technology,Department of Quantum and Computer Engineering
[3] Delft University of Technology,undefined
[4] Delft University of Technology,undefined
[5] Netherlands Organization for Applied Scientific Research (TNO),undefined
[6] Intel Corporation,undefined
[7] Intel Guadalajara,undefined
[8] École Polytechnique Fédérale de Lausanne (EPFL),undefined
来源
Nature | 2021年 / 593卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications1. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the quantum chip in a dilution refrigerator and the room-temperature electronics. Advanced lithography supports the fabrication of both control electronics and qubits in silicon using technology compatible with complementary metal oxide semiconductors (CMOS)2. When the electronics are designed to operate at cryogenic temperatures, they can ultimately be integrated with the qubits on the same die or package, overcoming the ‘wiring bottleneck’3–6. Here we report a cryogenic CMOS control chip operating at 3 kelvin, which outputs tailored microwave bursts to drive silicon quantum bits cooled to 20 millikelvin. We first benchmark the control chip and find an electrical performance consistent with qubit operations of 99.99 per cent fidelity, assuming ideal qubits. Next, we use it to coherently control actual qubits encoded in the spin of single electrons confined in silicon quantum dots7–9 and find that the cryogenic control chip achieves the same fidelity as commercial instruments at room temperature. Furthermore, we demonstrate the capabilities of the control chip by programming a number of benchmarking protocols, as well as the Deutsch–Josza algorithm10, on a two-qubit quantum processor. These results open up the way towards a fully integrated, scalable silicon-based quantum computer.
引用
收藏
页码:205 / 210
页数:5
相关论文
共 50 条
  • [1] CMOS-based cryogenic control of silicon quantum circuits
    Xue, Xiao
    Patra, Bishnu
    van Dijk, Jeroen P. G.
    Samkharadze, Nodar
    Subramanian, Sushil
    Corna, Andrea
    Paquelet Wuetz, Brian
    Jeon, Charles
    Sheikh, Farhana
    Juarez-Hernandez, Esdras
    Esparza, Brando Perez
    Rampurawala, Huzaifa
    Carlton, Brent
    Ravikumar, Surej
    Nieva, Carlos
    Kim, Sungwon
    Lee, Hyung-Jin
    Sammak, Amir
    Scappucci, Giordano
    Veldhorst, Menno
    Sebastiano, Fabio
    Babaie, Masoud
    Pellerano, Stefano
    Charbon, Edoardo
    Vandersypen, Lieven M. K.
    NATURE, 2021, 593 (7858) : 205 - +
  • [2] Cryogenic CMOS-based control system
    van Niekerk, P. C.
    Fourie, C. J.
    2007 AFRICON, VOLS 1-3, 2007, : 351 - 356
  • [3] Cryogenic Floating-Gate CMOS Circuits for Quantum Control
    Hasler J.
    Dick N.
    Das K.
    Degnan B.
    Moini A.
    Reilly D.
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [6] Silicon CMOS-Based THz Detection
    Lisauskas, Alvydas
    Boppel, Sebastian
    Krozer, Viktor
    Roskos, Hartmut G.
    2011 IEEE SENSORS, 2011, : 55 - 58
  • [7] Survey on Cryogenic CMOS Circuits for Quantum Computers
    Fuketa, Hiroshi
    IEEJ Transactions on Fundamentals and Materials, 2022, 142 (05) : 169 - 174
  • [8] Silicon deformable mirrors and CMOS-based wavefront sensors
    Mansell, JD
    Catrysse, PB
    Gustafson, EK
    Byer, RL
    HIGH-RESOLUTION WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS II, 2000, 4124 : 15 - 25
  • [9] CMOS-Based Readout and Control Electronics for Microgrippers
    Barrettino, Diego
    Mattavelli, Marco
    2020 IEEE SENSORS, 2020,
  • [10] Cryogenic Support Circuits and Systems for Silicon Quantum Computers
    Lehmann, Torsten
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,