In the present work, we obtain rigidity results analyzing the set of regular points, in the sense of Oseledec’s Theorem. It is presented a study on the possibility of Anosov diffeomorphisms having all Lyapunov exponents defined everywhere. We prove that this condition implies local rigidity of an Anosov automorphism of the torus Td,d≥3,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {T}^{d}, d \geq 3,$\end{document}C1 −close to a linear automorphism diagonalizable over ℝ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {R}$\end{document} and such that its characteristic polynomial is irreducible over ℚ.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {Q}.$\end{document}
机构:
Univ Sorbonne Paris Nord, LAGA CNRS, UMR 7539, F-93430 Villetaneuse, FranceUniv Sorbonne Paris Nord, LAGA CNRS, UMR 7539, F-93430 Villetaneuse, France
De Thelin, Henry
Gauthier, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Inst Polytech Paris, CMLS UMR 7640, Ecole Polytech, F-91128 Palaiseau, FranceUniv Sorbonne Paris Nord, LAGA CNRS, UMR 7539, F-93430 Villetaneuse, France
Gauthier, Thomas
Vigny, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Picardie Jules Verne, LAMFA UMR 7352, 33 Rue St Leu, F-80039 Amiens 1, FranceUniv Sorbonne Paris Nord, LAGA CNRS, UMR 7539, F-93430 Villetaneuse, France