Integrality in codimension one

被引:0
|
作者
Anders Thorup
机构
[1] Universitetsparken 5,Department of Mathematical Sciences
关键词
integral extension; finite map; exceptional fiber; standard graded algebra; 13B25; 13B05;
D O I
暂无
中图分类号
学科分类号
摘要
The paper from 2001 by Simis, Ulrich, and Vasconcelos contained deep results on codimension, multiplicity and integral extensions. The results and the ideas of the paper led to substantial simplifications in the treatment of the exceptional fiber of a conormal space, considered previously by Kleiman and the present author. In addition, the paper contained the following theorem: Let R ⊆ S be an extension of commutative rings, where R is noetherian, universally catenary, and locally equidimensional. Then the extension R ⊆ S is integral if minimal primes of S contract to minimal primes of R and, for every prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{p}$$\end{document} of height at most 1 in R, the extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathfrak{p} \subseteq S_\mathfrak{p}$$\end{document} is integral.
引用
收藏
页码:865 / 870
页数:5
相关论文
共 50 条