A novel analytical potential function for dicationic diatomic molecular systems based on deformed exponential function

被引:0
|
作者
Daniel F. S. Machado
Rodrigo A. L. Silva
Ana Paula de Oliveira
Valter H. Carvalho-Silva
Ricardo Gargano
Luciano Ribeiro
Heibbe C. B. de Oliveira
机构
[1] Universidade de Brasília,Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química
[2] Universidade Estadual de Goiás,Grupo de Química Teórica e Estrutural de Anápolis, Câmpus de Ciências Exatas de Anápolis
[3] Universidade de Brasília,Instituto de Física
来源
关键词
Cationic diatomic systems; -exponential function; Potential energy curve; Spectroscopic constants;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new alternative analytical function aiming to better describe the potential energy curves of the doubly charged diatomic molecules. To achieve this goal, we modified an existing potential function in the literature to describe dicationic diatomic molecules using the deformed exponential function. We generated the potential energy curve of the testing group of dicationic diatomic molecules Be22+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{B}{\mathrm{e}}_2^{2+} $$\end{document}, BH2+, He22+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{H}{\mathrm{e}}_2^{2+} $$\end{document} and NH2+ by means of the CCSD(T)/aug-cc-pVQZ level of theory. To validate this new function, we also calculated the spectroscopic constants and the rovibrational spectra for the electronic state X1Σg+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {X}^1{\varSigma}_g^{+} $$\end{document}of the Be22+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{B}{\mathrm{e}}_2^{2+} $$\end{document} and He22+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{H}{\mathrm{e}}_2^{2+} $$\end{document} systems using the Dunham and discrete variable representation methods. For BH2+ and NH2+ molecules, despite exhibiting a local minimum in the potential energy curve, no vibrational levels are supported, so the spectroscopic constants for these poorly bound systems are invalidated. The fitting accuracy had a better performance over the original potential for describing dicationic diatomic systems, considering that the discrete variable representation method resulted in a similar vibrational structure described in the literature. This fact can be explained due to the deformed function’s flexibility.
引用
收藏
相关论文
共 50 条