Symbolic powers of sums of ideals

被引:0
|
作者
Huy Tài Hà
Hop Dang Nguyen
Ngo Viet Trung
Tran Nam Trung
机构
[1] Tulane University,Department of Mathematics
[2] Vietnam Academy of Science and Technology,Institute of Mathematics
[3] Vietnam Academy of Science and Technology,International Centre for Research and Postgraduate Training, Institute of Mathematics
[4] TIMAS,undefined
[5] Thang Long University,undefined
来源
Mathematische Zeitschrift | 2020年 / 294卷
关键词
Symbolic power; Sum of ideals; Associated prime; Tensor product; Binomial expansion; Depth; Castelnuovo–Mumford regularity; Tor-vanishing; Depth function; Primary 13C15; 14B05; Secondary 13D07; 18G15;
D O I
暂无
中图分类号
学科分类号
摘要
Let I and J be nonzero ideals in two Noetherian algebras A and B over a field k. Let I+J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I+J$$\end{document} denote the ideal generated by I and J in A⊗kB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\otimes _k B$$\end{document}. We prove the following expansion for the symbolic powers: (I+J)(n)=∑i+j=nI(i)J(j).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (I+J)^{(n)} = \sum _{i+j = n} I^{(i)} J^{(j)}. \end{aligned}$$\end{document}If A and B are polynomial rings and if char(k)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{char}\,}}(k) = 0$$\end{document} or if I and J are monomial ideals, we give exact formulas for the depth and the Castelnuovo–Mumford regularity of (I+J)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I+J)^{(n)}$$\end{document}, which depend on the interplay between the symbolic powers of I and J. The proof involves a result of independent interest which states that the induced map ToriA(k,I(n))→ToriR(k,I(n-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Tor}\,}}_i^A(k,I^{(n)}) \rightarrow {{\,\mathrm{Tor}\,}}_i^R(k,I^{(n-1)})$$\end{document} is zero for any homogeneous ideal I and i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ge 0$$\end{document}, n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 0$$\end{document}. We also investigate other properties and invariants of (I+J)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I+J)^{(n)}$$\end{document} such as the equality between ordinary and symbolic powers, the Waldschmidt constant and the Cohen–Macaulayness.
引用
收藏
页码:1499 / 1520
页数:21
相关论文
共 50 条