Symbolic powers of sums of ideals

被引:0
|
作者
Huy Tài Hà
Hop Dang Nguyen
Ngo Viet Trung
Tran Nam Trung
机构
[1] Tulane University,Department of Mathematics
[2] Vietnam Academy of Science and Technology,Institute of Mathematics
[3] Vietnam Academy of Science and Technology,International Centre for Research and Postgraduate Training, Institute of Mathematics
[4] TIMAS,undefined
[5] Thang Long University,undefined
来源
Mathematische Zeitschrift | 2020年 / 294卷
关键词
Symbolic power; Sum of ideals; Associated prime; Tensor product; Binomial expansion; Depth; Castelnuovo–Mumford regularity; Tor-vanishing; Depth function; Primary 13C15; 14B05; Secondary 13D07; 18G15;
D O I
暂无
中图分类号
学科分类号
摘要
Let I and J be nonzero ideals in two Noetherian algebras A and B over a field k. Let I+J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I+J$$\end{document} denote the ideal generated by I and J in A⊗kB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\otimes _k B$$\end{document}. We prove the following expansion for the symbolic powers: (I+J)(n)=∑i+j=nI(i)J(j).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (I+J)^{(n)} = \sum _{i+j = n} I^{(i)} J^{(j)}. \end{aligned}$$\end{document}If A and B are polynomial rings and if char(k)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{char}\,}}(k) = 0$$\end{document} or if I and J are monomial ideals, we give exact formulas for the depth and the Castelnuovo–Mumford regularity of (I+J)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I+J)^{(n)}$$\end{document}, which depend on the interplay between the symbolic powers of I and J. The proof involves a result of independent interest which states that the induced map ToriA(k,I(n))→ToriR(k,I(n-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Tor}\,}}_i^A(k,I^{(n)}) \rightarrow {{\,\mathrm{Tor}\,}}_i^R(k,I^{(n-1)})$$\end{document} is zero for any homogeneous ideal I and i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ge 0$$\end{document}, n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 0$$\end{document}. We also investigate other properties and invariants of (I+J)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I+J)^{(n)}$$\end{document} such as the equality between ordinary and symbolic powers, the Waldschmidt constant and the Cohen–Macaulayness.
引用
收藏
页码:1499 / 1520
页数:21
相关论文
共 50 条
  • [1] Symbolic powers of sums of ideals
    Huy Tai Ha
    Hop Dang Nguyen
    Ngo Viet Trung
    Tran Nam Trung
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1499 - 1520
  • [2] Binomial expansion for saturated and symbolic powers of sums of ideals
    Ha, Huy Tai
    Jayanthan, A. V.
    Kumar, Arvind
    Nguyen, Hop D.
    JOURNAL OF ALGEBRA, 2023, 620 : 690 - 710
  • [3] COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS
    Bocci, Cristiano
    Harbourne, Brian
    JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) : 399 - 417
  • [4] Symbolic powers of radical ideals
    Li, Aihua
    Swanson, Irena
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (03) : 997 - 1009
  • [5] SYMBOLIC POWERS OF DETERMINANTAL IDEALS
    TRUNG, NV
    JOURNAL OF ALGEBRA, 1979, 58 (02) : 361 - 369
  • [6] On symbolic powers of prime ideals
    Sather-Wagstaff, S
    COMMUTATIVE ALGEBRA: INTERACTIONS WITH ALGEBRAIC GEOMETRY, 2003, 331 : 329 - 342
  • [7] SYMBOLIC POWERS OF MONOMIAL IDEALS
    Cooper, Susan M.
    Embree, Robert J. D.
    Ha, Huy Tai
    Hoefel, Andrew H.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (01) : 39 - 55
  • [8] Symbolic powers of edge ideals
    Bahiano, CEN
    JOURNAL OF ALGEBRA, 2004, 273 (02) : 517 - 537
  • [9] SYMBOLIC POWERS OF DERKSEN IDEALS
    Sandoval-Gomez, Sandra
    JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (02) : 275 - 286
  • [10] Integral closures of powers of sums of ideals
    Arindam Banerjee
    Tài Huy Hà
    Journal of Algebraic Combinatorics, 2023, 58 : 307 - 323