Segmentation of Multi-Channel Image with Markov Random Field Based Active Contour Model

被引:0
|
作者
Dongxiang Xu
Jenq-Neng Hwang
Chun Yuan
机构
[1] Adobe Systems Inc.,Advanced Technology Group
[2] University of Washington,Department of Electrical Engineering
[3] University of Washington,Department of Radiology
关键词
segmentation; multi-channel data clustering; multi-dimensional MRF; active contour model;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation is an important research area in image processing and computer vision. The essential purpose of research work is to achieve two goals: (i) partition the image into homogeneous regions based on certain properties, and (ii) accurately track the boundary for each region. In this study, we will present a novel framework that is designed to fulfill these requirements. Distinguished from most existing approaches, our method consists of three steps in the segmentation processes: global region segmentation, control points searching and object boundary tracking. In step one, we apply Markov Random Field (MRF) modeling to multi-channel images and propose a robust energy minimization approach to solve the multi-dimensional Markov Random Field. In step two, control points are found along the target region boundary by using a maximum reliability criterion and deployed to automatically initialize a Minimum Path Approach (MPA). Finally, the active contour evolves to the optimal solution in the fine-tuning process. In this study, we have applied this framework to color images and multi-contrast weighting magnetic resonance image data. The experimental results show encouraging performance. Moreover, the proposed approach also has the potential to deal with topology changing and composite object problems in boundary tracking.
引用
收藏
页码:45 / 55
页数:10
相关论文
共 50 条
  • [41] A Markov random field image segmentation model for color textured images
    Kato, Zoltan
    Pong, Ting-Chuen
    IMAGE AND VISION COMPUTING, 2006, 24 (10) : 1103 - 1114
  • [42] Multispectral MRI image segmentation using Markov random field model
    Ali Ahmadvand
    Peyman Kabiri
    Signal, Image and Video Processing, 2016, 10 : 251 - 258
  • [43] A General Bayesian Markov Random Field Model for Probabilistic Image Segmentation
    Dalmau, Oscar
    Rivera, Mariano
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 149 - 161
  • [44] Constrained Markov random field model for color and texture image segmentation
    Dey, Rahul
    Nanda, P. K.
    Panda, Sucheta
    ICSCN 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING COMMUNICATIONS AND NETWORKING, 2008, : 317 - +
  • [45] Improved Active Contour Model for Multi-Phase MR Image Segmentation and Bias Field Correction
    Yang, Yunyun
    Jia, Wenjing
    Tian, Dongcai
    PROCEEDINGS OF 2019 THE 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP 2019) WITH WORKSHOP 2019 THE 4TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2019), 2019, : 242 - 246
  • [46] A Two-Stage Image Segmentation Model for Multi-Channel Images
    Li, Zhi
    Zeng, Tieyong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (04) : 904 - 926
  • [47] An irregular MRF region label model for multi-channel image segmentation
    Smits, PC
    Dellepiane, SG
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1133 - 1142
  • [48] An Improved Image Segmentation Active Contour Model
    Zhou, Lifen
    Cai, Changxu
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 3463 - 3467
  • [49] ITERATIVE MULTI-ATLAS BASED SEGMENTATION WITH MULTI-CHANNEL IMAGE REGISTRATION AND JACKKNIFE CONTEXT MODEL
    Hao, Yongfu
    Jiang, Tianzi
    Fan, Yong
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 900 - 903
  • [50] Image Segmentation Method Based on Dual Feature Markov Random Field
    Duan Mingyi
    Lu Yinju
    Su Yu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)