Weighted korn inequalities in paraboloidal domains

被引:0
|
作者
S. A. Nazarov
机构
[1] Admiral S. O. Makarov State Naval Academy,
来源
Mathematical Notes | 1997年 / 62卷
关键词
Korn inequalities; elasticity problem; energy class; boundary value problems in unbounded domains;
D O I
暂无
中图分类号
学科分类号
摘要
A weighted Korn inequality in a domain Ω ⊂ ℝn with paraboloidal exit II to infinity is obtained. Asymptotic sharpness of the inequality is achieved by using different weight factors for the longitudinal (with respect to the axis of II) and transversal displacement vector components and by making the weight factors of the derivatives depend on the direction of differentiation. The solvability of the elasticity problem in the energy class (the closure of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C_0^\infty (\bar \Omega )^n$$ \end{document} in the norm generated by the elastic energy functional) is studied; the dimensions of the kernel and the cokerned of the corresponding operator depend on the exponents∈(−∞, 1) in the “rate of expansion” of the paraboloid II.
引用
收藏
页码:629 / 641
页数:12
相关论文
共 50 条