An Abstract Law of Large Numbers

被引:0
|
作者
Nabil I. Al-Najjar
Luciano Pomatto
机构
[1] Northwestern University,Department of Managerial Economics and Decision Sciences, Kellogg School of Management
[2] California Institute of Technology,Division of the Humanities and Social Sciences
来源
Sankhya A | 2020年 / 82卷
关键词
Finitely additive probabilities; Measure theory; Measurability; Primary 28A25; Secondary 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
We study independent random variables (Zi)i∈I aggregated by integrating with respect to a nonatomic and finitely additive probability ν over the index set I. We analyze the behavior of the resulting random average ∫IZidν(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\int }_I Z_i d\nu (i)$\end{document}. We establish that any ν that guarantees the measurability of ∫IZidν(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\int }_I Z_i d\nu (i)$\end{document} satisfies the following law of large numbers: for any collection (Zi)i∈I of uniformly bounded and independent random variables, almost surely the realized average ∫IZidν(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\int }_I Z_i d\nu (i)$\end{document} equals the average expectation ∫IE[Zi]dν(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\int }_I E[Z_i]d\nu (i)$\end{document}.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条