We study independent random variables (Zi)i∈I aggregated by integrating with respect to a nonatomic and finitely additive probability ν over the index set I. We analyze the behavior of the resulting random average ∫IZidν(i)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\int }_I Z_i d\nu (i)$\end{document}. We establish that any ν that guarantees the measurability of ∫IZidν(i)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\int }_I Z_i d\nu (i)$\end{document} satisfies the following law of large numbers: for any collection (Zi)i∈I of uniformly bounded and independent random variables, almost surely the realized average ∫IZidν(i)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\int }_I Z_i d\nu (i)$\end{document} equals the average expectation ∫IE[Zi]dν(i)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\int }_I E[Z_i]d\nu (i)$\end{document}.