Silent bugs in deep learning frameworks: an empirical study of Keras and TensorFlow

被引:0
|
作者
Florian Tambon
Amin Nikanjam
Le An
Foutse Khomh
Giuliano Antoniol
机构
[1] Polytechnique Montreal,
来源
关键词
Deep learning; Bug analysis; Empirical study; Keras; TensorFlow;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Analysis of Deep Learning Libraries: Keras, PyTorch, and MXnet
    Kim, Seongsoo
    Wimmer, Hayden
    Kim, Jongyeop
    2022 IEEE/ACIS 20TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2022, : 54 - 62
  • [32] Distributed Deep Reinforcement Learning using TensorFlow
    Rao, P. Ajay
    Kumar, Navaneesh B.
    Cadabam, Siddharth
    Praveena, T.
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 171 - 174
  • [33] TensorFlow: Biology's Gateway to Deep Learning?
    Rampasek, Ladislav
    Goldenberg, Anna
    CELL SYSTEMS, 2016, 2 (01) : 12 - 14
  • [34] Mesh-TensorFlow: Deep Learning for Supercomputers
    Shazeer, Noam
    Cheng, Youlong
    Parmar, Niki
    Tran, Dustin
    Vaswani, Ashish
    Koanantakool, Penporn
    Hawkins, Peter
    Lee, HyoukJoong
    Hong, Mingsheng
    Young, Cliff
    Sepassi, Ryan
    Hechtman, Blake
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [35] An Empirical Study towards Characterizing Deep Learning Development and Deployment across Different Frameworks and Platforms
    Quo, Qianyu
    Chen, Sen
    Xie, Xiaofei
    Mai, Lei
    Hu, Qiang
    Liu, Hongtao
    Liu, Yang
    Zhao, Jianjun
    Li, Xiaohong
    34TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE 2019), 2019, : 822 - 834
  • [36] Silent Bugs Matter: A Study of Compiler-Introduced Security Bugs
    Xu, Jianhao
    Lu, Kangjie
    Du, Zhengjie
    Ding, Zhu
    Li, Linke
    Wu, Qiushi
    Payer, Mathias
    Mao, Bing
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 3655 - 3672
  • [37] A Fortran-Keras Deep Learning Bridge for Scientific Computing
    Ott, Jordan
    Pritchard, Mike
    Best, Natalie
    Linstead, Erik
    Curcic, Milan
    Baldi, Pierre
    SCIENTIFIC PROGRAMMING, 2020, 2020
  • [38] Using Machine Learning Techniques to Predict Bugs in Classes: An Empirical Study
    Alzahrani, Musaad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 891 - 897
  • [39] An Empirical Study on Bugs in PHP
    Wang, Ziyuan
    Bu, Dexin
    Xuan, Xingpeng
    Gu, Jia
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2022, 32 (06) : 845 - 870
  • [40] Developing Deep Learning Models for Multimedia Applications in TensorFlow
    Busson, Antonio Jose G.
    de Figueiredo, Lucas Caracas
    dos Santos, Gabriel N. P.
    Damasceno, Andre Luiz de B.
    Colcher, Sergio
    Milidiu, Ruy
    WEBMEDIA'18: PROCEEDINGS OF THE 24TH BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2018, : 7 - 9