Artificial intelligence enhanced automatic identification for concrete cracks using acoustic impact hammer testing

被引:0
|
作者
Mohamad Najib Alhebrawi
Huang Huang
Zhishen Wu
机构
[1] Ibaraki University,Department of Urban and Civil Engineering
[2] Southeast University,Key Laboratory of Concrete and Prestressed Concrete Structure of the Ministry of Education
关键词
Impact hammer testing; Cracks identification; Artificial intelligence; MFCC; Acoustic NDT;
D O I
暂无
中图分类号
学科分类号
摘要
Impact hammer testing is a regular structure inspection method for detecting surface and internal damages. Inspectors use the sound from impact hammer testing to determine the damaged area. However, manual impact hammer testing cannot meet the reliable accuracy for small damages, such as concrete cracks, and due to the shortage of experienced workers, a reliable tool is needed to evaluate the hammering sound. Therefore, to improve the detection accuracy, this study proposes an automatic crack identification process of impact hammer testing. Three approaches are used to identify crack characteristics, such as width, depth, and location, based on fast Fourier transformation for the hammering sound. To determine the relationship between damaged and intact information values, the first and second approaches use dominant frequency (Df\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{f}$$\end{document}) and frequency feature value (Vf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{f}$$\end{document}), respectively, whereas the last one uses Mel-frequency cepstral coefficients (MFCCs). Six concrete specimens with different crack widths and depths were fabricated to validate the three approaches. The experimental results reveal that although Df\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{f}$$\end{document} can to detect the damage, it cannot classify its depth and width. Furthermore, Vf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{f}$$\end{document} indicates the cracks, which are 20-mm deep. Three different artificial-intelligence classification algorithms were used to validate the MFCC approach, fuzzy rule, gradient boosted trees, and support vector machine (SVM). The three algorithms are applied and evaluated to enhance the acoustic impact hammer testing. The results reveal that the SVM algorithm confirms the ability and effectiveness for accurately identifying the concrete fine cracks that are 0.2-mm wide and 40-mm deep.
引用
收藏
页码:469 / 484
页数:15
相关论文
共 50 条
  • [21] Automatic Identification of Failure in Hip Replacement: An Artificial Intelligence Approach
    Loppini, Mattia
    Gambaro, Francesco Manlio
    Chiappetta, Katia
    Grappiolo, Guido
    Bianchi, Anna Maria
    Corino, Valentina D. A.
    BIOENGINEERING-BASEL, 2022, 9 (07):
  • [22] Evaluating enhanced predictive modeling of foam concrete compressive strength using artificial intelligence algorithms
    Abdellatief, Mohamed
    Wong, Leong Sing
    Din, Norashidah Md
    Mo, Kim Hung
    Ahmed, Ali Najah
    El-Shafie, Ahmed
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [23] Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?
    Ye, Huayu
    Cheng, Zixuan
    Ungvijanpunya, Nicha
    Chen, Wenjing
    Cao, Li
    Gou, Yongchao
    BMC ORAL HEALTH, 2023, 23 (01)
  • [24] Automatic Identification of Stone-Handling Behaviour in Japanese Macaques Using LabGym Artificial Intelligence
    Ardoin, Théo
    Sueur, Cédric
    arXiv, 2023,
  • [25] Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?
    Huayu Ye
    Zixuan Cheng
    Nicha Ungvijanpunya
    Wenjing Chen
    Li Cao
    Yongchao Gou
    BMC Oral Health, 23
  • [26] Automatic identification of stone-handling behaviour in Japanese macaques using LabGym artificial intelligence
    Ardoin, Theo
    Sueur, Cedric
    PRIMATES, 2024, 65 (03) : 159 - 172
  • [27] Automatic identification of stone-handling behaviour in Japanese macaques using LabGym artificial intelligence
    Théo Ardoin
    Cédric Sueur
    Primates, 2024, 65 : 159 - 172
  • [28] Automatic detection of misogyny on X using artificial intelligence
    Morales-Castro, Jose-Carmen
    Perez-Crespo, Jose-Armando
    Lozano-Garcia, Jose-Merced
    Hernandez-Rayas, Angelica
    Ruiz-Pinales, Jose
    Guzman-Cabrera, Rafael
    DYNA, 2024, 99 (06): : 562 - 562
  • [30] Automatic detection of mycobacterium tuberculosis using artificial intelligence
    Xiong, Yan
    Ba, Xiaojun
    Hou, Ao
    Zhang, Kaiwen
    Chen, Longsen
    Li, Ting
    JOURNAL OF THORACIC DISEASE, 2018, 10 (03) : 1936 - 1940