XCOVNet: Chest X-ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks

被引:0
|
作者
Vishu Madaan
Aditya Roy
Charu Gupta
Prateek Agrawal
Anand Sharma
Cristian Bologa
Radu Prodan
机构
[1] Lovely Professional University,
[2] Bhagwan Parshuram Institute of Technology,undefined
[3] University of Klagenfurt,undefined
[4] Mody University of Science and Technology,undefined
[5] Babes-Bolyai University,undefined
来源
New Generation Computing | 2021年 / 39卷
关键词
Coronavirus; SARS-COV-2; COVID-19 disease diagnosis; Machine learning; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
COVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.
引用
收藏
页码:583 / 597
页数:14
相关论文
共 50 条
  • [31] Detection of COVID-19 Using Deep Convolutional Neural Network on Chest X-Ray (CXR) Images
    Tang, Goon Sheng
    Chow, Li Sze
    Solihin, Mahmud Iwan
    Ramli, Norlisah
    Gowdh, Nadia Fareeda
    Rahmat, Kartini
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [32] Automated detection of COVID-19 through convolutional neural network using chest x-ray images
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    Wang, Kate
    PLOS ONE, 2022, 17 (01):
  • [33] Automated COVID-19 detection using Deep Convolutional Neural Network and Chest X-ray Images
    Agrawal, Tarun
    Choudhary, Prakash
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 277 - 281
  • [34] Classification of X-Ray Images of the Chest Using Convolutional Neural Networks
    Mochurad, Lesia
    Dereviannyi, Andrii
    Antoniv, Uliana
    IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 269 - 282
  • [35] COVID-19 detection in X-ray images using convolutional neural networks[Formula presented]
    Arias-Garzón, Daniel
    Alzate-Grisales, Jesús Alejandro
    Orozco-Arias, Simon
    Arteaga-Arteaga, Harold Brayan
    Bravo-Ortiz, Mario Alejandro
    Mora-Rubio, Alejandro
    Saborit-Torres, Jose Manuel
    Serrano, Joaquim Ángel Montell
    de la Iglesia Vayá, Maria
    Cardona-Morales, Oscar
    Tabares-Soto, Reinel
    Arias-Garzón, Daniel (daniel.ariasgar@autonoma.edu.co), 1600, Elsevier Ltd (06):
  • [36] COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID
    de Sousa P.M.
    Carneiro P.C.
    Oliveira M.M.
    Pereira G.M.
    da Costa Junior C.A.
    de Moura L.V.
    Mattjie C.
    da Silva A.M.M.
    Patrocinio A.C.
    Research on Biomedical Engineering, 2022, 38 (1) : 87 - 97
  • [37] Fine-Tuning Convolutional Neural Networks for COVID-19 Detection from Chest X-ray Images
    Zhao, Wentao
    Jiang, Wei
    Qiu, Xinguo
    DIAGNOSTICS, 2021, 11 (10)
  • [38] A Simplified Convolutional Neural Network Design for COVID-19 Classification on Chest X-ray Images
    Sae-Lim, Wannipa
    Suwannanon, Ruedeekorn
    Aiyarak, Pattara
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [39] Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2
    Rakhymzhan, Tomiris
    Zarrin, Javad
    Maktab-Dar-Oghaz, Mahdi
    Saheer, Lakshmi Babu
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 106 - 116
  • [40] Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network
    Qi, Xiao
    Brown, Lloyd G.
    Foran, David J.
    Nosher, John
    Hacihaliloglu, Ilker
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (02) : 197 - 206