Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure

被引:0
|
作者
Frédéric de Gournay
Jonas Kahn
Léo Lebrat
机构
[1] Université de Toulouse,Institut de Mathématiques de Toulouse (UMR 5219), CNRS, INSA
[2] Université de Toulouse,Institut de Mathématiques de Toulouse (UMR 5219), CNRS, UPS, IMT
来源
Numerische Mathematik | 2019年 / 141卷
关键词
49M15; 65D18; 46N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims at determining under which conditions the semi-discrete optimal transport is twice differentiable with respect to the parameters of the discrete measure and exhibits numerical applications. The discussion focuses on minimal conditions on the background measure to ensure differentiability. We provide numerical illustrations in stippling and blue noise problems.
引用
收藏
页码:429 / 453
页数:24
相关论文
共 50 条
  • [31] Semi-discrete isothermic surfaces
    Burstall, F.
    Hertrich-Jeromin, U.
    Mueller, C.
    Rossman, W.
    GEOMETRIAE DEDICATA, 2016, 183 (01) : 43 - 58
  • [32] Existence of semi-discrete shocks
    Benzoni-Gavage, S
    Huot, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (01) : 163 - 190
  • [33] A NUMERICAL ALGORITHM FOR L2 SEMI-DISCRETE OPTIMAL TRANSPORT IN 3D
    Levy, Bruno
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1693 - 1715
  • [34] SEMI-DISCRETE AND FULLY DISCRETE HDG METHODS FOR BURGERS' EQUATION
    Zhu, Zimo
    Chen, Gang
    Xie, Xiaoping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (01) : 58 - 81
  • [35] Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations
    Boyer, Franck
    Le Rousseau, Jerome
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05): : 1035 - 1078
  • [36] A Laplace Operator on Semi-Discrete Surfaces
    Wolfgang Carl
    Foundations of Computational Mathematics, 2016, 16 : 1115 - 1150
  • [37] Algebraic entropy for semi-discrete equations
    Demskoi, D. K.
    Viallet, C-M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (35)
  • [38] A Laplace Operator on Semi-Discrete Surfaces
    Carl, Wolfgang
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (05) : 1115 - 1150
  • [39] A semi-discrete modified KdV equation
    Sun, Jianqing
    Hu, Xingbiao
    Zhang, Yingnan
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (04)
  • [40] Pfaffianization of the semi-discrete Toda equation
    Li, CX
    Hu, XB
    PHYSICS LETTERS A, 2004, 329 (03) : 193 - 198