Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure

被引:0
|
作者
Frédéric de Gournay
Jonas Kahn
Léo Lebrat
机构
[1] Université de Toulouse,Institut de Mathématiques de Toulouse (UMR 5219), CNRS, INSA
[2] Université de Toulouse,Institut de Mathématiques de Toulouse (UMR 5219), CNRS, UPS, IMT
来源
Numerische Mathematik | 2019年 / 141卷
关键词
49M15; 65D18; 46N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims at determining under which conditions the semi-discrete optimal transport is twice differentiable with respect to the parameters of the discrete measure and exhibits numerical applications. The discussion focuses on minimal conditions on the background measure to ensure differentiability. We provide numerical illustrations in stippling and blue noise problems.
引用
收藏
页码:429 / 453
页数:24
相关论文
共 50 条
  • [1] Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure
    de Gournay, Frederic
    Kahn, Jonas
    Lebrat, Leo
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 429 - 453
  • [2] Initialization Procedures for Discrete and Semi-Discrete Optimal Transport
    Meyron, Jocelyn
    COMPUTER-AIDED DESIGN, 2019, 115 : 13 - 22
  • [3] A discrete method for the initialization of semi-discrete optimal transport problem
    Lin, Judy Yangjun
    Guo, Shaoyan
    Xie, Longhan
    Du, Ruxu
    Xu, Gu
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [4] Semi-discrete Optimization Through Semi-discrete Optimal Transport: A Framework for Neural Architecture Search
    Nicolás García Trillos
    Javier Morales
    Journal of Nonlinear Science, 2022, 32
  • [5] Semi-discrete Optimization Through Semi-discrete Optimal Transport: A Framework for Neural Architecture Search
    Trillos, Nicolas Garcia
    Morales, Javier
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (03)
  • [6] Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings
    Agarwal, Pankaj K.
    Raghvendra, Sharath
    Shirzadian, Pouyan
    Yao, Keegan
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4514 - 4529
  • [7] Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
    Bansil, Mohit
    Kitagawa, Jun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7354 - 7389
  • [8] Convergence of a Newton algorithm for semi-discrete optimal transport
    Kitagawa, Jun
    Merigot, Quentin
    Thibert, Boris
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (09) : 2603 - 2651
  • [9] Semi-discrete optimal transport methods for the semi-geostrophic equations
    David P. Bourne
    Charlie P. Egan
    Beatrice Pelloni
    Mark Wilkinson
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [10] Semi-discrete optimal transport methods for the semi-geostrophic equations
    Bourne, David P.
    Egan, Charlie P.
    Pelloni, Beatrice
    Wilkinson, Mark
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)