Statistics of Turbulence in the Stable Boundary Layer Affected by Gravity Waves

被引:0
|
作者
Zbigniew Sorbjan
Agnieszka Czerwinska
机构
[1] Marquette University,Department of Physics
[2] Polish Academy of Sciences,Institute of Geophysics
来源
Boundary-Layer Meteorology | 2013年 / 148卷
关键词
Boulder Atmospheric Observatory; Gradient-based similarity; Gravity waves; Stable boundary layer;
D O I
暂无
中图分类号
学科分类号
摘要
In order to investigate effects of interactions between turbulence and gravity waves in the stable boundary layer on similarity theory relationships, we re-examined a dataset, collected during three April nights in 1978 and in 1980 on the 300-m tower of the Boulder Atmospheric Observatory (BAO). The BAO site, located in Erie, Colorado, USA, 30 km east of the foothills of the Rocky Mountains, has been known for the frequent detection of wave activities. The considered profiles of turbulent fluxes and variances were normalized by two local, gradient-based scaling systems, and subsequently compared with similarity functions of the Richardson number, obtained based on data with no influence of gravity currents and topographical factors. The first scaling system was based on local values of the vertical velocity variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm{w}$$\end{document} and the Brunt–Väisäla frequency\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N,$$\end{document} while the second one was based on the temperature variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\theta }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N.$$\end{document} Analysis showed some departures from the similarity functions (obtained for data with virtually no influence of mesoscale motions); nonetheless the overall dependency of dimensionless moments on the Richardson number was maintained.
引用
收藏
页码:73 / 91
页数:18
相关论文
共 50 条
  • [21] The role of gravity waves in nocturnal boundary layer variability
    Poulos, GS
    [J]. 12TH SYMPOSIUM ON BOUNDARY LAYERS AND TURBULENCE, 1997, : 146 - 147
  • [22] Steps, waves and turbulence in the stably stratified planetary boundary layer
    Chimonas, G
    [J]. BOUNDARY-LAYER METEOROLOGY, 1999, 90 (03) : 397 - 421
  • [23] On the eddy mixing and energetics of turbulence in a stable atmospheric boundary layer
    Kurbatskii, A. F.
    Kurbatskaya, L. I.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2012, 48 (06) : 595 - 602
  • [24] TURBULENCE STRUCTURE IN A STRATIFIED BOUNDARY LAYER UNDER STABLE CONDITIONS
    YUJI OHYA
    DAVID E. NEFF
    ROBERT N. MERONEY
    [J]. Boundary-Layer Meteorology, 1997, 83 : 139 - 162
  • [25] Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer
    Francesco Barbano
    Luigi Brogno
    Francesco Tampieri
    Silvana Di Sabatino
    [J]. Boundary-Layer Meteorology, 2022, 183 : 35 - 65
  • [26] Multiple Regimes of Wind, Stratification, and Turbulence in the Stable Boundary Layer
    Monahan, Adam H.
    Rees, Tim
    He, Yanping
    McFarlane, Norman
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (08) : 3178 - 3198
  • [27] Turbulence characteristics of a stable boundary layer over sloping terrain
    Cava, D
    Giostra, U
    Trombetti, F
    Tagliazucca, M
    [J]. AIR POLLUTION V, 1997, : 91 - 100
  • [28] Heat Transport by Turbulence and Submeso Structures in the Stable Boundary Layer
    Mahrt, L.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2024, 190 (03)
  • [29] Determining Wave-Turbulence Interactions in the Stable Boundary Layer
    Nappo, C.
    Sun, J.
    Mahrt, L.
    Belusic, D.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (01) : ES11 - ES13
  • [30] Turbulence structure in a stratified boundary layer under stable conditions
    Ohya, Y
    Neff, DE
    Meroney, RN
    [J]. BOUNDARY-LAYER METEOROLOGY, 1997, 83 (01) : 139 - 161